metadata
base_model:
- stabilityai/stable-diffusion-2-inpainting
- stabilityai/stable-diffusion-2-1
pipeline_tag: image-to-image
import torch
import numpy as np
from PIL import Image
from diffusers.utils import load_image
from transformers import AutoConfig, AutoModel, ModelCard
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
image_gray = load_image(img_url).resize((512, 512)).convert('L').convert('RGB') # image must be 3 channel
mask_image = load_image(mask_url).resize((512, 512))
mask = (np.array(mask_image)>128)*1
image_gray_masked = Image.fromarray(((1-mask) * np.array(image_gray)).astype(np.uint8))
# Load the gray-inpaint model
gray_inpaintor = AutoModel.from_pretrained(
'jwengr/stable-diffusion-2-gray-inpaint-to-rgb',
subfolder='gray-inpaint',
trust_remote_code=True,
)
Load the gray2rgb model
gray2rgb = AutoModel.from_pretrained(
'jwengr/stable-diffusion-2-gray-inpaint-to-rgb',
subfolder='gray2rgb',
trust_remote_code=True,
)
Move models to GPU
gray_inpaintor.to('cuda')
gray2rgb.to('cuda')
# Enable memory-efficient attention
# gray2rgb.unet.enable_xformers_memory_efficient_attention()
# gray_inpaintor.unet.enable_xformers_memory_efficient_attention()
with torch.autocast('cuda',dtype=torch.bfloat16):
with torch.no_grad():
# each model's input image should be one of PIL.Image, List[PIL.Image], preprocessed tensor (B,3,H,W). Image must be 3 channel
image_gray_restored = gray_inpaintor(image_gray_masked, num_inference_steps=250, seed=10)[0].convert('L') # you can pass 'mask' arg explictly. mask : Tensor (B,1,512,512)
image_restored = gray2rgb(image_gray_restored.convert('RGB'))