k4black's picture
update model card README.md
5040fba
|
raw
history blame
3.52 kB
---
tags:
- generated_from_trainer
datasets:
- esnli
metrics:
- f1
- accuracy
model-index:
- name: textattack-roberta-base-MNLI-e-snli-classification-nli-base
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: esnli
type: esnli
config: plain_text
split: validation
args: plain_text
metrics:
- name: F1
type: f1
value: 0.9106202958294739
- name: Accuracy
type: accuracy
value: 0.9110953058321479
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# textattack-roberta-base-MNLI-e-snli-classification-nli-base
This model is a fine-tuned version of [textattack/roberta-base-MNLI](https://huggingface.co/textattack/roberta-base-MNLI) on the esnli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2488
- F1: 0.9106
- Accuracy: 0.9111
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| 1.5376 | 0.05 | 400 | 0.4010 | 0.8556 | 0.8556 |
| 0.4352 | 0.09 | 800 | 0.3349 | 0.8795 | 0.8800 |
| 0.4 | 0.14 | 1200 | 0.3180 | 0.8851 | 0.8854 |
| 0.3801 | 0.19 | 1600 | 0.2975 | 0.8918 | 0.8921 |
| 0.3599 | 0.23 | 2000 | 0.2949 | 0.8951 | 0.8955 |
| 0.3612 | 0.28 | 2400 | 0.2802 | 0.8987 | 0.8987 |
| 0.3519 | 0.33 | 2800 | 0.2763 | 0.8977 | 0.8980 |
| 0.349 | 0.37 | 3200 | 0.2766 | 0.9020 | 0.9023 |
| 0.3432 | 0.42 | 3600 | 0.2748 | 0.9000 | 0.9001 |
| 0.3435 | 0.47 | 4000 | 0.2702 | 0.9051 | 0.9051 |
| 0.3352 | 0.51 | 4400 | 0.2728 | 0.9034 | 0.9039 |
| 0.3277 | 0.56 | 4800 | 0.2634 | 0.9039 | 0.9043 |
| 0.3307 | 0.61 | 5200 | 0.2623 | 0.9050 | 0.9057 |
| 0.3247 | 0.65 | 5600 | 0.2685 | 0.9059 | 0.9063 |
| 0.3175 | 0.7 | 6000 | 0.2589 | 0.9081 | 0.9084 |
| 0.3144 | 0.75 | 6400 | 0.2586 | 0.9088 | 0.9093 |
| 0.3102 | 0.79 | 6800 | 0.2547 | 0.9088 | 0.9090 |
| 0.3223 | 0.84 | 7200 | 0.2526 | 0.9093 | 0.9096 |
| 0.3166 | 0.89 | 7600 | 0.2490 | 0.9115 | 0.9118 |
| 0.3124 | 0.93 | 8000 | 0.2503 | 0.9106 | 0.9107 |
| 0.3053 | 0.98 | 8400 | 0.2452 | 0.9099 | 0.9101 |
| 0.2908 | 1.03 | 8800 | 0.2575 | 0.9113 | 0.9119 |
| 0.2853 | 1.07 | 9200 | 0.2464 | 0.9114 | 0.9118 |
| 0.2796 | 1.12 | 9600 | 0.2488 | 0.9106 | 0.9111 |
### Framework versions
- Transformers 4.27.1
- Pytorch 1.12.1+cu113
- Datasets 2.10.1
- Tokenizers 0.13.2