LegalBert trained as sequence classifier for multilabel classification on 8 unfairness labels + FAIR label, multilabel (a ToS can have multiple labels, trying to guess them all)

{ "epoch": 0.999043062200957, "eval_A_f1": 0.0, "eval_A_precision": 0.0, "eval_A_recall": 0.0, "eval_CH_f1": 0.0, "eval_CH_precision": 0.0, "eval_CH_recall": 0.0, "eval_CR_f1": 0.0, "eval_CR_precision": 0.0, "eval_CR_recall": 0.0, "eval_FAIR_f1": 0.9544351203273459, "eval_FAIR_precision": 0.9774147727272727, "eval_FAIR_recall": 0.9325111803767449, "eval_J_f1": 0.0, "eval_J_precision": 0.0, "eval_J_recall": 0.0, "eval_LAW_f1": 0.0, "eval_LAW_precision": 0.0, "eval_LAW_recall": 0.0, "eval_LTD_f1": 0.6153846153846154, "eval_LTD_precision": 0.7472527472527473, "eval_LTD_recall": 0.5230769230769231, "eval_TER_f1": 0.0, "eval_TER_precision": 0.0, "eval_TER_recall": 0.0, "eval_USE_f1": 0.017241379310344827, "eval_USE_precision": 1.0, "eval_USE_recall": 0.008695652173913044, "eval_accuracy": 0.8484116439183477, "eval_f1_macro": 0.17634012389136736, "eval_loss": 0.06019286438822746, "eval_precision_macro": 0.3027408355533356, "eval_recall_macro": 0.1626981950697312, "eval_runtime": 894.9212, "eval_samples_per_second": 9.251, "eval_steps_per_second": 0.579, "step": 261 },

Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for kaantureyyen/legal-bert-claudette-multilabel

Finetuned
(47)
this model

Dataset used to train kaantureyyen/legal-bert-claudette-multilabel