File size: 1,627 Bytes
58740ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
datasets:
- LawInformedAI/claudette_tos
language:
- en
base_model:
- nlpaueb/legal-bert-base-uncased
pipeline_tag: text-classification
---

LegalBert trained as sequence classifier for multilabel classification on 8 unfairness labels + FAIR label, multilabel (a ToS can have multiple labels, trying to guess them all)

{
      "epoch": 0.999043062200957,
      "eval_A_f1": 0.0,
      "eval_A_precision": 0.0,
      "eval_A_recall": 0.0,
      "eval_CH_f1": 0.0,
      "eval_CH_precision": 0.0,
      "eval_CH_recall": 0.0,
      "eval_CR_f1": 0.0,
      "eval_CR_precision": 0.0,
      "eval_CR_recall": 0.0,
      "eval_FAIR_f1": 0.9544351203273459,
      "eval_FAIR_precision": 0.9774147727272727,
      "eval_FAIR_recall": 0.9325111803767449,
      "eval_J_f1": 0.0,
      "eval_J_precision": 0.0,
      "eval_J_recall": 0.0,
      "eval_LAW_f1": 0.0,
      "eval_LAW_precision": 0.0,
      "eval_LAW_recall": 0.0,
      "eval_LTD_f1": 0.6153846153846154,
      "eval_LTD_precision": 0.7472527472527473,
      "eval_LTD_recall": 0.5230769230769231,
      "eval_TER_f1": 0.0,
      "eval_TER_precision": 0.0,
      "eval_TER_recall": 0.0,
      "eval_USE_f1": 0.017241379310344827,
      "eval_USE_precision": 1.0,
      "eval_USE_recall": 0.008695652173913044,
      "eval_accuracy": 0.8484116439183477,
      "eval_f1_macro": 0.17634012389136736,
      "eval_loss": 0.06019286438822746,
      "eval_precision_macro": 0.3027408355533356,
      "eval_recall_macro": 0.1626981950697312,
      "eval_runtime": 894.9212,
      "eval_samples_per_second": 9.251,
      "eval_steps_per_second": 0.579,
      "step": 261
    },