|
--- |
|
license: cc-by-nc-sa-4.0 |
|
--- |
|
|
|
# Phikon-based ABMIL models for metastasis detection |
|
|
|
These are weakly-supervised, attention-based multiple instance learning models for binary metastasis detection (normal versus metastasis). The models were trained on the [CAMELYON16](https://camelyon16.grand-challenge.org/Data/) dataset using Phikon embeddings. |
|
|
|
# Data |
|
|
|
- Training set consisted of 243 whole slide images (WSIs). |
|
- 143 negative |
|
- 100 positive |
|
- 52 macrometastases |
|
- 48 micrometastases |
|
- Validation set consisted of 27 WSIs. |
|
- 16 negative |
|
- 11 positive |
|
- 6 macrometastases |
|
- 5 micrometastases |
|
- Test set consisted of 129 WSIs. |
|
- 80 negative |
|
- 49 positive |
|
- 22 macrometastases |
|
- 27 micrometastases |
|
|
|
# Evaluation |
|
|
|
Below are the classification results on the test set. |
|
|
|
| Seed | Sensitivity | Specificity | BA | Precision | F1 | |
|
|-------:|--------------:|--------------:|------:|------------:|------:| |
|
| 0 | 0.939 | 0.963 | 0.951 | 0.939 | 0.939 | |
|
| 1 | 0.571 | 0.950 | 0.761 | 0.875 | 0.691 | |
|
| 2 | 0.857 | 1.000 | 0.929 | 1.000 | 0.923 | |
|
| 3 | 0.898 | 0.988 | 0.943 | 0.978 | 0.936 | |
|
| 4 | 0.959 | 0.950 | 0.955 | 0.922 | 0.940 | |
|
|
|
# How to reuse the model |
|
|
|
The model expects 128 x 128 micrometer patches, embedded with the Phikon model. |
|
|
|
```python |
|
import torch |
|
from abmil import AttentionMILModel |
|
|
|
model = AttentionMILModel(in_features=768, L=512, D=384, num_classes=2, gated_attention=True) |
|
model.eval() |
|
state_dict = torch.load("seed4/model_best.pt", map_location="cpu", weights_only=True) |
|
model.load_state_dict(state_dict) |
|
|
|
# Load a bag of features |
|
bag = torch.ones(1000, 768) |
|
with torch.inference_mode(): |
|
logits, attention = model(bag) |
|
``` |
|
|