UNI-based ABMIL models for metastasis detection
These are weakly-supervised, attention-based multiple instance learning models for binary metastasis detection (normal versus metastasis). The models were trained on the CAMELYON16 dataset using UNI embeddings.
If you find this model useful, please cite our corresponding preprint:
@misc{kaczmarzyk2024explainableaicomputationalpathology,
title={Explainable AI for computational pathology identifies model limitations and tissue biomarkers},
author={Jakub R. Kaczmarzyk and Joel H. Saltz and Peter K. Koo},
year={2024},
eprint={2409.03080},
archivePrefix={arXiv},
primaryClass={q-bio.TO},
url={https://arxiv.org/abs/2409.03080},
}
Data
- Training set consisted of 243 whole slide images (WSIs).
- 143 negative
- 100 positive
- 52 macrometastases
- 48 micrometastases
- Validation set consisted of 27 WSIs.
- 16 negative
- 11 positive
- 6 macrometastases
- 5 micrometastases
- Test set consisted of 129 WSIs.
- 80 negative
- 49 positive
- 22 macrometastases
- 27 micrometastases
Evaluation
Below are the classification results on the test set.
Seed | Sensitivity | Specificity | BA | Precision | F1 |
---|---|---|---|---|---|
0 | 0.959 | 1.000 | 0.980 | 1.000 | 0.979 |
1 | 0.959 | 0.988 | 0.973 | 0.979 | 0.969 |
2 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
3 | 0.980 | 0.950 | 0.965 | 0.923 | 0.950 |
4 | 0.980 | 1.000 | 0.990 | 1.000 | 0.990 |
How to reuse the model
The model expects 128 x 128 micrometer patches, embedded with the UNI model.
import torch
from abmil import AttentionMILModel
model = AttentionMILModel(in_features=1024, L=512, D=384, num_classes=2, gated_attention=True)
model.eval()
state_dict = torch.load("seed2/model_best.pt", map_location="cpu", weights_only=True)
model.load_state_dict(state_dict)
# Load a bag of features
bag = torch.ones(1000, 1024)
with torch.inference_mode():
logits, attention = model(bag)
How to train the model
Download the UNI embeddings for CAMELYON16 from https://huggingface.co/datasets/kaczmarj/camelyon16-uni and then, run the commands below.
# Seed 0
python train_classification.py --model-name AttentionMILModel --features-dir path/to/features/ --output-dir outputs/abmil-uni-128um_seed0 --csv data.csv --label-col binary_label_int --num-classes 2 --embedding-size 1024 --split-json splits.json --fold 0 --num-epochs 20 --seed 0 -L 512 -D 384 --lr 1e-4
# Seed 1
python train_classification.py --model-name AttentionMILModel --features-dir path/to/features/ --output-dir outputs/abmil-uni-128um_seed1 --csv data.csv --label-col binary_label_int --num-classes 2 --embedding-size 1024 --split-json splits.json --fold 0 --num-epochs 20 --seed 1 -L 512 -D 384 --lr 1e-4
# Seed 2
python train_classification.py --model-name AttentionMILModel --features-dir path/to/features/ --output-dir outputs/abmil-uni-128um_seed2 --csv data.csv --label-col binary_label_int --num-classes 2 --embedding-size 1024 --split-json splits.json --fold 0 --num-epochs 20 --seed 2 -L 512 -D 384 --lr 1e-4
# Seed 3
python train_classification.py --model-name AttentionMILModel --features-dir path/to/features/ --output-dir outputs/abmil-uni-128um_seed3 --csv data.csv --label-col binary_label_int --num-classes 2 --embedding-size 1024 --split-json splits.json --fold 0 --num-epochs 20 --seed 3 -L 512 -D 384 --lr 1e-4
# Seed 4
python train_classification.py --model-name AttentionMILModel --features-dir path/to/features/ --output-dir outputs/abmil-uni-128um_seed4 --csv data.csv --label-col binary_label_int --num-classes 2 --embedding-size 1024 --split-json splits.json --fold 0 --num-epochs 20 --seed 4 -L 512 -D 384 --lr 1e-4