File size: 2,342 Bytes
4648a5d
 
 
 
 
 
a79bd26
4648a5d
560c4b5
 
 
4648a5d
560c4b5
 
 
 
 
 
 
 
993851c
 
e4e9018
993851c
 
 
 
 
 
 
 
 
e4e9018
993851c
 
 
4648a5d
e4e9018
 
 
 
 
 
 
 
 
 
4648a5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4e9018
4648a5d
 
 
 
e4e9018
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
base_model: alpindale/Mistral-7B-v0.2-hf
tags:
- axolotl
- generated_from_trainer
model-index:
- name: janus-7b
  results: []
license: apache-2.0
language:
- en
---
## Links for Reference

- **Homepage: In Progress** 
- **Repository: https://github.com/kaistAI/Janus** 
- **Paper:** 
- **Point of Contact:[email protected]**

# TL; DR
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6550c4f27bbfce1878f5f280/vrQl8D8FV3vqUJYbPgsiG.png)

Janus is a model trained using [Mistral-7B-v0.2](https://huggingface.co/mistral-community/Mistral-7B-v0.2) as its base model. Janus has been trained on [Multifaceted Collection](), a preference dataset containing 192k unique system messages for aligning LLMs to diverse human preferences. Janus not only excels at generating personalized responses that cater to various human preferences but is also adept at producing responses that are generally preferred for being helpful and harmless.

# Model Details

## Model Description

- **Model type:** Language model
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Related Models:** [Janus-66k-7B]() [Janus-DPO-7B](), [Janus-ORPO-7B](), [Janus-RM-7B]()
- **Training Data**: [Multifaceted Collection]()
- **Resources for more information:**
  - [Research paper]()
  - [GitHub Repo](https://github.com/kaistAI/Janus)

# Usage
Janus is a model generalized for various system messages, allowing users to control the model's response by inputting the desired system message. The input prompt format is as follows:
```
[INST]{system_message}\n{instruction}[/INST]
```
Additionally, an example of the inference code applying this is as follows:
```
```
# Training Details
## Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4

## Framework versions

- Transformers 4.40.0.dev0
- Pytorch 2.2.2
- Datasets 2.18.0
- Tokenizers 0.15.0

# Citation

If you find the following model helpful, please consider citing our paper!

**BibTeX:**

```bibtex
```