Mistral-ORPO-⍺ (7B)

Mistral-ORPO is a fine-tuned version of mistralai/Mistral-7B-v0.1 using the odds ratio preference optimization (ORPO). With ORPO, the model directly learns the preference without the supervised fine-tuning warmup phase. Mistral-ORPO-⍺ is fine-tuned exclusively on HuggingFaceH4/ultrafeedback_binarized.

👍 Model Performance

1) AlpacaEval & MT-Bench

Model Name Size Align MT-Bench AlpacaEval 1.0 AlpacaEval 2.0
Mistral-ORPO-⍺ 7B ORPO 7.23 87.92 11.33
Mistral-ORPO 7B ORPO 7.32 91.41 12.20
Zephyr β 7B DPO 7.34 90.60 10.99
TULU-2-DPO 13B DPO 7.00 89.5 10.12
Llama-2-Chat 7B RLHF 6.27 71.37 4.96
Llama-2-Chat 13B RLHF 6.65 81.09 7.70

2) IFEval

Model Type Prompt-Strict Prompt-Loose Inst-Strict Inst-Loose
Mistral-ORPO-⍺ 0.5009 0.5083 0.5995 0.6163
Mistral-ORPO-β 0.5287 0.5564 0.6355 0.6619

🗺️ MT-Bench by Category

image/png

🖥️ Inference

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("kaist-ai/mistral-orpo-alpha")
tokenizer = AutoTokenizer.from_pretrained("kaist-ai/mistral-orpo-alpha")

# Apply chat template
query = [{'role': 'user', 'content': 'Hi! How are you doing?'}]
prompt = tokenizer.apply_chat_template(query, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors='pt')

# Generation with specific configurations
output = model.generate(
  **inputs,
  max_new_tokens=128,
  do_sample=True,
  temperature=0.7
)
response = tokenizer.batch_decode(output)

#<|user|>
#Hi! How are you doing?</s>
#<|assistant|>
#I'm doing well, thank you! How are you?</s>

📎 Citation

@misc{hong2024orpo,
      title={ORPO: Monolithic Preference Optimization without Reference Model}, 
      author={Jiwoo Hong and Noah Lee and James Thorne},
      year={2024},
      eprint={2403.07691},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Downloads last month
32
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kaist-ai/mistral-orpo-alpha

Finetuned
(801)
this model
Quantizations
1 model

Dataset used to train kaist-ai/mistral-orpo-alpha

Spaces using kaist-ai/mistral-orpo-alpha 7

Collection including kaist-ai/mistral-orpo-alpha

Evaluation results