distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0494
  • Accuracy: {'accuracy': 0.885}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3799 {'accuracy': 0.863}
0.4468 2.0 500 0.5154 {'accuracy': 0.867}
0.4468 3.0 750 0.5412 {'accuracy': 0.879}
0.2163 4.0 1000 0.7670 {'accuracy': 0.872}
0.2163 5.0 1250 0.8273 {'accuracy': 0.878}
0.0556 6.0 1500 0.9885 {'accuracy': 0.873}
0.0556 7.0 1750 1.0767 {'accuracy': 0.873}
0.0285 8.0 2000 1.1202 {'accuracy': 0.87}
0.0285 9.0 2250 1.0409 {'accuracy': 0.886}
0.0178 10.0 2500 1.0494 {'accuracy': 0.885}

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.0
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for kaitojoye/distilbert-base-uncased-lora-text-classification

Adapter
(231)
this model