opus-mt-en-bkm-10e / README.md
kalese's picture
End of training
e36d861 verified
---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-ro
tags:
- generated_from_trainer
datasets:
- arrow
metrics:
- bleu
model-index:
- name: opus-mt-en-bkm-10e
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: arrow
type: arrow
config: default
split: train
args: default
metrics:
- name: Bleu
type: bleu
value: 7.1794
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-en-bkm-10e
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the arrow dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5644
- Bleu: 7.1794
- Gen Len: 60.0222
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 186 | 2.6868 | 0.299 | 76.178 |
| No log | 2.0 | 372 | 2.0190 | 2.2444 | 67.167 |
| 3.115 | 3.0 | 558 | 1.8364 | 4.5959 | 59.7357 |
| 3.115 | 4.0 | 744 | 1.7372 | 5.1827 | 61.7218 |
| 3.115 | 5.0 | 930 | 1.6732 | 5.8295 | 59.7346 |
| 1.8706 | 6.0 | 1116 | 1.6301 | 6.4389 | 60.9085 |
| 1.8706 | 7.0 | 1302 | 1.6002 | 6.6498 | 60.4191 |
| 1.8706 | 8.0 | 1488 | 1.5792 | 6.8315 | 60.2721 |
| 1.7133 | 9.0 | 1674 | 1.5680 | 7.1239 | 60.5609 |
| 1.7133 | 10.0 | 1860 | 1.5644 | 7.1794 | 60.0222 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2