kalese's picture
End of training
966b9a7 verified
metadata
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-ro
tags:
  - generated_from_trainer
datasets:
  - arrow
metrics:
  - bleu
model-index:
  - name: opus-mt-en-bkm-Final-80
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: arrow
          type: arrow
          config: default
          split: train
          args: default
        metrics:
          - name: Bleu
            type: bleu
            value: 10.3853

opus-mt-en-bkm-Final-80

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ro on the arrow dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4265
  • Bleu: 10.3853
  • Gen Len: 49.8443

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
3.4583 1.0 781 2.0553 3.6067 54.2885
1.9985 2.0 1562 1.8020 5.5427 48.141
1.8553 3.0 2343 1.6664 6.9654 48.4025
1.6865 4.0 3124 1.5875 7.949 47.8417
1.6207 5.0 3905 1.5302 8.6008 48.1286
1.5265 6.0 4686 1.4857 9.3569 49.3219
1.4961 7.0 5467 1.4598 9.7246 50.4949
1.4409 8.0 6248 1.4413 10.0815 49.4964
1.4101 9.0 7029 1.4288 10.3204 49.9725
1.3954 10.0 7810 1.4265 10.3853 49.8443

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2