|
--- |
|
license: apache-2.0 |
|
base_model: Helsinki-NLP/opus-mt-en-ro |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- arrow |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: opus-mt-en-bkm |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: arrow |
|
type: arrow |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 17.7574 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# opus-mt-en-bkm |
|
|
|
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the arrow dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1790 |
|
- Bleu: 17.7574 |
|
- Gen Len: 58.4209 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| |
|
| 2.1758 | 1.0 | 1113 | 1.8681 | 4.1739 | 58.6351 | |
|
| 1.8143 | 2.0 | 2226 | 1.6288 | 6.2869 | 62.8396 | |
|
| 1.635 | 3.0 | 3339 | 1.4789 | 7.8756 | 58.5721 | |
|
| 1.4988 | 4.0 | 4452 | 1.3930 | 9.2821 | 59.5793 | |
|
| 1.3753 | 5.0 | 5565 | 1.3288 | 10.4942 | 58.924 | |
|
| 1.3015 | 6.0 | 6678 | 1.2773 | 11.3724 | 60.0849 | |
|
| 1.2424 | 7.0 | 7791 | 1.2419 | 12.1525 | 60.724 | |
|
| 1.1758 | 8.0 | 8904 | 1.2131 | 12.5595 | 58.5216 | |
|
| 1.1263 | 9.0 | 10017 | 1.1882 | 13.4807 | 58.1827 | |
|
| 1.0781 | 10.0 | 11130 | 1.1720 | 13.6583 | 56.953 | |
|
| 1.0377 | 11.0 | 12243 | 1.1571 | 14.2744 | 58.1146 | |
|
| 1.0014 | 12.0 | 13356 | 1.1437 | 14.5804 | 57.9928 | |
|
| 0.9737 | 13.0 | 14469 | 1.1326 | 14.9612 | 57.4652 | |
|
| 0.9384 | 14.0 | 15582 | 1.1263 | 15.1647 | 58.4813 | |
|
| 0.9061 | 15.0 | 16695 | 1.1262 | 15.3948 | 57.8562 | |
|
| 0.8854 | 16.0 | 17808 | 1.1164 | 15.7348 | 57.8652 | |
|
| 0.8657 | 17.0 | 18921 | 1.1179 | 15.9306 | 57.5578 | |
|
| 0.837 | 18.0 | 20034 | 1.1140 | 16.0704 | 58.2836 | |
|
| 0.8208 | 19.0 | 21147 | 1.1135 | 16.1836 | 57.6796 | |
|
| 0.7919 | 20.0 | 22260 | 1.1117 | 16.4418 | 57.7658 | |
|
| 0.7645 | 21.0 | 23373 | 1.1134 | 16.3838 | 58.2189 | |
|
| 0.7519 | 22.0 | 24486 | 1.1157 | 16.4369 | 57.7701 | |
|
| 0.7375 | 23.0 | 25599 | 1.1178 | 16.4328 | 57.5811 | |
|
| 0.7221 | 24.0 | 26712 | 1.1186 | 16.8289 | 57.3139 | |
|
| 0.7009 | 25.0 | 27825 | 1.1190 | 16.9092 | 57.9038 | |
|
| 0.6882 | 26.0 | 28938 | 1.1254 | 17.0946 | 58.229 | |
|
| 0.6778 | 27.0 | 30051 | 1.1246 | 17.1689 | 58.5953 | |
|
| 0.6668 | 28.0 | 31164 | 1.1281 | 17.1734 | 58.1258 | |
|
| 0.6589 | 29.0 | 32277 | 1.1322 | 16.9988 | 58.0218 | |
|
| 0.639 | 30.0 | 33390 | 1.1297 | 17.2725 | 58.3717 | |
|
| 0.6318 | 31.0 | 34503 | 1.1392 | 17.3926 | 57.9088 | |
|
| 0.6174 | 32.0 | 35616 | 1.1429 | 17.385 | 58.6474 | |
|
| 0.6105 | 33.0 | 36729 | 1.1443 | 17.4034 | 58.7521 | |
|
| 0.5953 | 34.0 | 37842 | 1.1485 | 17.4571 | 58.4733 | |
|
| 0.5897 | 35.0 | 38955 | 1.1491 | 17.4854 | 58.9544 | |
|
| 0.5807 | 36.0 | 40068 | 1.1572 | 17.544 | 58.1013 | |
|
| 0.5774 | 37.0 | 41181 | 1.1588 | 17.5858 | 58.4694 | |
|
| 0.5633 | 38.0 | 42294 | 1.1588 | 17.604 | 58.2328 | |
|
| 0.5565 | 39.0 | 43407 | 1.1640 | 17.7342 | 58.3148 | |
|
| 0.5556 | 40.0 | 44520 | 1.1642 | 17.6596 | 58.6809 | |
|
| 0.5469 | 41.0 | 45633 | 1.1671 | 17.5064 | 58.1013 | |
|
| 0.5428 | 42.0 | 46746 | 1.1686 | 17.7473 | 58.5171 | |
|
| 0.5342 | 43.0 | 47859 | 1.1719 | 17.749 | 58.8335 | |
|
| 0.5292 | 44.0 | 48972 | 1.1730 | 17.6552 | 58.4492 | |
|
| 0.5314 | 45.0 | 50085 | 1.1728 | 17.7932 | 58.6007 | |
|
| 0.5283 | 46.0 | 51198 | 1.1770 | 17.7351 | 58.4564 | |
|
| 0.5252 | 47.0 | 52311 | 1.1778 | 17.803 | 58.5793 | |
|
| 0.5227 | 48.0 | 53424 | 1.1782 | 17.7729 | 58.3533 | |
|
| 0.5206 | 49.0 | 54537 | 1.1788 | 17.7547 | 58.5108 | |
|
| 0.5186 | 50.0 | 55650 | 1.1790 | 17.7574 | 58.4209 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|