Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: true
load_in_4bit: false
strict: false

datasets:
  - path: kareemamrr/databricks-dolly-3k
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out

sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

hub_model_id: kareemamrr/tinyllama-1.1B_dolly-3k_lora

wandb_project: tinyllama-1.1B_dolly-3k
wandb_entity: kamr54
wandb_name: lora

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

tinyllama-1.1B_dolly-3k_lora

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on a subset of the Databricks Dolly dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7510

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.9375 0.0476 1 2.1187
1.9297 0.2857 6 2.0186
1.8257 0.5714 12 1.8111
1.7285 0.8571 18 1.7862
1.752 1.1071 24 1.7848
1.8686 1.3929 30 1.7808
1.6451 1.6786 36 1.7594
1.7861 1.9643 42 1.7582
1.6606 2.2024 48 1.7536
1.6168 2.4881 54 1.7543
1.7087 2.7738 60 1.7527
1.7276 3.0119 66 1.7525
1.8117 3.2976 72 1.7487
1.6897 3.5833 78 1.7502
1.7861 3.8690 84 1.7510

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for kamrr/tinyllama-1.1B_dolly-3k_lora