metadata
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results: []
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0602
- Precision: 0.9329
- Recall: 0.9495
- F1: 0.9411
- Accuracy: 0.9858
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0792 | 1.0 | 1756 | 0.0811 | 0.9147 | 0.9347 | 0.9246 | 0.9804 |
0.0404 | 2.0 | 3512 | 0.0589 | 0.9280 | 0.9477 | 0.9377 | 0.9852 |
0.0249 | 3.0 | 5268 | 0.0602 | 0.9329 | 0.9495 | 0.9411 | 0.9858 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2