results / README.md
karangupta224's picture
Model save
0702ff0 verified
metadata
license: cc-by-nc-4.0
base_model: mental/mental-roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of mental/mental-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7715
  • Accuracy: 0.8014
  • F1: 0.8161
  • Precision: 0.7816
  • Recall: 0.8537

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.3921 0.99 31 0.4379 0.8042 0.8153 0.7943 0.8374
0.3376 1.98 62 0.4358 0.8112 0.8173 0.8162 0.8184
0.3126 2.98 93 0.4642 0.7972 0.8172 0.7642 0.8780
0.2838 4.0 125 0.4438 0.8196 0.8264 0.8209 0.8320
0.2504 4.99 156 0.5249 0.7958 0.8161 0.7624 0.8780
0.2912 5.98 187 0.6067 0.7972 0.8221 0.7511 0.9079
0.1335 6.98 218 0.7014 0.8 0.8197 0.7665 0.8808
0.1579 7.94 248 0.7715 0.8014 0.8161 0.7816 0.8537

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2