git-base-pokemon / README.md
karlkwon's picture
update model card README.md
2e3063b
|
raw
history blame
2.78 kB
---
license: mit
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: git-base-pokemon
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# git-base-pokemon
This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0340
- Wer Score: 2.1498
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Score |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
| 7.321 | 2.13 | 50 | 4.4679 | 21.5557 |
| 2.2294 | 4.26 | 100 | 0.3441 | 11.8745 |
| 0.1021 | 6.38 | 150 | 0.0283 | 0.5672 |
| 0.0187 | 8.51 | 200 | 0.0251 | 0.6018 |
| 0.0086 | 10.64 | 250 | 0.0272 | 3.6786 |
| 0.0038 | 12.77 | 300 | 0.0288 | 6.7119 |
| 0.0019 | 14.89 | 350 | 0.0300 | 4.2023 |
| 0.0011 | 17.02 | 400 | 0.0308 | 4.0768 |
| 0.0009 | 19.15 | 450 | 0.0310 | 3.5980 |
| 0.0007 | 21.28 | 500 | 0.0315 | 3.5723 |
| 0.0007 | 23.4 | 550 | 0.0323 | 2.8835 |
| 0.0006 | 25.53 | 600 | 0.0325 | 2.8399 |
| 0.0006 | 27.66 | 650 | 0.0330 | 2.6274 |
| 0.0006 | 29.79 | 700 | 0.0331 | 2.5416 |
| 0.0006 | 31.91 | 750 | 0.0334 | 2.4213 |
| 0.0006 | 34.04 | 800 | 0.0335 | 2.3214 |
| 0.0006 | 36.17 | 850 | 0.0330 | 2.2330 |
| 0.0006 | 38.3 | 900 | 0.0337 | 2.2254 |
| 0.0006 | 40.43 | 950 | 0.0338 | 2.1652 |
| 0.0006 | 42.55 | 1000 | 0.0340 | 2.1447 |
| 0.0006 | 44.68 | 1050 | 0.0340 | 2.1767 |
| 0.0006 | 46.81 | 1100 | 0.0340 | 2.1536 |
| 0.0006 | 48.94 | 1150 | 0.0340 | 2.1498 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.12.0
- Tokenizers 0.13.3