|
--- |
|
model-index: |
|
- name: karsar/paraphrase-multilingual-MiniLM-L12-hu-v2 |
|
results: |
|
- dataset: |
|
config: hun_Latn-hun_Latn |
|
name: MTEB BelebeleRetrieval (hun_Latn-hun_Latn) |
|
revision: 75b399394a9803252cfec289d103de462763db7c |
|
split: test |
|
type: facebook/belebele |
|
metrics: |
|
- type: main_score |
|
value: 80.204 |
|
- type: map_at_1 |
|
value: 69.111 |
|
- type: map_at_10 |
|
value: 76.773 |
|
- type: map_at_100 |
|
value: 77.169 |
|
- type: map_at_1000 |
|
value: 77.173 |
|
- type: map_at_20 |
|
value: 77.033 |
|
- type: map_at_3 |
|
value: 75.333 |
|
- type: map_at_5 |
|
value: 76.19399999999999 |
|
- type: mrr_at_1 |
|
value: 69.11111111111111 |
|
- type: mrr_at_10 |
|
value: 76.77345679012352 |
|
- type: mrr_at_100 |
|
value: 77.16929744881674 |
|
- type: mrr_at_1000 |
|
value: 77.17269244765126 |
|
- type: mrr_at_20 |
|
value: 77.03286768605402 |
|
- type: mrr_at_3 |
|
value: 75.33333333333334 |
|
- type: mrr_at_5 |
|
value: 76.19444444444449 |
|
- type: nauc_map_at_1000_diff1 |
|
value: 80.43265248651925 |
|
- type: nauc_map_at_1000_max |
|
value: 71.870230668987 |
|
- type: nauc_map_at_1000_std |
|
value: -3.0084092423300604 |
|
- type: nauc_map_at_100_diff1 |
|
value: 80.42911054177607 |
|
- type: nauc_map_at_100_max |
|
value: 71.86888714337594 |
|
- type: nauc_map_at_100_std |
|
value: -3.0086379837670716 |
|
- type: nauc_map_at_10_diff1 |
|
value: 80.36522921472617 |
|
- type: nauc_map_at_10_max |
|
value: 71.97959119190223 |
|
- type: nauc_map_at_10_std |
|
value: -2.7429598598137104 |
|
- type: nauc_map_at_1_diff1 |
|
value: 83.07496179427446 |
|
- type: nauc_map_at_1_max |
|
value: 70.1472835630915 |
|
- type: nauc_map_at_1_std |
|
value: -4.892100745257178 |
|
- type: nauc_map_at_20_diff1 |
|
value: 80.4010557171958 |
|
- type: nauc_map_at_20_max |
|
value: 71.9262402987486 |
|
- type: nauc_map_at_20_std |
|
value: -2.855142719268829 |
|
- type: nauc_map_at_3_diff1 |
|
value: 80.21618957663902 |
|
- type: nauc_map_at_3_max |
|
value: 72.32078865805673 |
|
- type: nauc_map_at_3_std |
|
value: -3.307117509227628 |
|
- type: nauc_map_at_5_diff1 |
|
value: 80.25726339569668 |
|
- type: nauc_map_at_5_max |
|
value: 71.96694381406756 |
|
- type: nauc_map_at_5_std |
|
value: -2.835991564758579 |
|
- type: nauc_mrr_at_1000_diff1 |
|
value: 80.43265248651925 |
|
- type: nauc_mrr_at_1000_max |
|
value: 71.870230668987 |
|
- type: nauc_mrr_at_1000_std |
|
value: -3.0084092423300604 |
|
- type: nauc_mrr_at_100_diff1 |
|
value: 80.42911054177607 |
|
- type: nauc_mrr_at_100_max |
|
value: 71.86888714337594 |
|
- type: nauc_mrr_at_100_std |
|
value: -3.0086379837670716 |
|
- type: nauc_mrr_at_10_diff1 |
|
value: 80.36522921472617 |
|
- type: nauc_mrr_at_10_max |
|
value: 71.97959119190223 |
|
- type: nauc_mrr_at_10_std |
|
value: -2.7429598598137104 |
|
- type: nauc_mrr_at_1_diff1 |
|
value: 83.07496179427446 |
|
- type: nauc_mrr_at_1_max |
|
value: 70.1472835630915 |
|
- type: nauc_mrr_at_1_std |
|
value: -4.892100745257178 |
|
- type: nauc_mrr_at_20_diff1 |
|
value: 80.4010557171958 |
|
- type: nauc_mrr_at_20_max |
|
value: 71.9262402987486 |
|
- type: nauc_mrr_at_20_std |
|
value: -2.855142719268829 |
|
- type: nauc_mrr_at_3_diff1 |
|
value: 80.21618957663902 |
|
- type: nauc_mrr_at_3_max |
|
value: 72.32078865805673 |
|
- type: nauc_mrr_at_3_std |
|
value: -3.307117509227628 |
|
- type: nauc_mrr_at_5_diff1 |
|
value: 80.25726339569668 |
|
- type: nauc_mrr_at_5_max |
|
value: 71.96694381406756 |
|
- type: nauc_mrr_at_5_std |
|
value: -2.835991564758579 |
|
- type: nauc_ndcg_at_1000_diff1 |
|
value: 79.98494037296896 |
|
- type: nauc_ndcg_at_1000_max |
|
value: 72.09578054274171 |
|
- type: nauc_ndcg_at_1000_std |
|
value: -2.480464992138408 |
|
- type: nauc_ndcg_at_100_diff1 |
|
value: 79.80423727797705 |
|
- type: nauc_ndcg_at_100_max |
|
value: 72.0536867142539 |
|
- type: nauc_ndcg_at_100_std |
|
value: -2.344303480460221 |
|
- type: nauc_ndcg_at_10_diff1 |
|
value: 79.4824234416871 |
|
- type: nauc_ndcg_at_10_max |
|
value: 72.68066855765318 |
|
- type: nauc_ndcg_at_10_std |
|
value: -1.0802283735752285 |
|
- type: nauc_ndcg_at_1_diff1 |
|
value: 83.07496179427446 |
|
- type: nauc_ndcg_at_1_max |
|
value: 70.1472835630915 |
|
- type: nauc_ndcg_at_1_std |
|
value: -4.892100745257178 |
|
- type: nauc_ndcg_at_20_diff1 |
|
value: 79.57286963155312 |
|
- type: nauc_ndcg_at_20_max |
|
value: 72.45565146275474 |
|
- type: nauc_ndcg_at_20_std |
|
value: -1.5388256709848513 |
|
- type: nauc_ndcg_at_3_diff1 |
|
value: 79.27965557528921 |
|
- type: nauc_ndcg_at_3_max |
|
value: 73.21665805867235 |
|
- type: nauc_ndcg_at_3_std |
|
value: -2.325102213384337 |
|
- type: nauc_ndcg_at_5_diff1 |
|
value: 79.24430450556383 |
|
- type: nauc_ndcg_at_5_max |
|
value: 72.55798047361041 |
|
- type: nauc_ndcg_at_5_std |
|
value: -1.346397266164686 |
|
- type: nauc_precision_at_1000_diff1 |
|
value: .nan |
|
- type: nauc_precision_at_1000_max |
|
value: .nan |
|
- type: nauc_precision_at_1000_std |
|
value: .nan |
|
- type: nauc_precision_at_100_diff1 |
|
value: 48.65946378551628 |
|
- type: nauc_precision_at_100_max |
|
value: 65.39282379618602 |
|
- type: nauc_precision_at_100_std |
|
value: 24.616513271977254 |
|
- type: nauc_precision_at_10_diff1 |
|
value: 74.02416251053245 |
|
- type: nauc_precision_at_10_max |
|
value: 77.2101523536241 |
|
- type: nauc_precision_at_10_std |
|
value: 10.31518298376219 |
|
- type: nauc_precision_at_1_diff1 |
|
value: 83.07496179427446 |
|
- type: nauc_precision_at_1_max |
|
value: 70.1472835630915 |
|
- type: nauc_precision_at_1_std |
|
value: -4.892100745257178 |
|
- type: nauc_precision_at_20_diff1 |
|
value: 71.5107376283843 |
|
- type: nauc_precision_at_20_max |
|
value: 77.21568627450955 |
|
- type: nauc_precision_at_20_std |
|
value: 11.723622782445986 |
|
- type: nauc_precision_at_3_diff1 |
|
value: 75.76535137737912 |
|
- type: nauc_precision_at_3_max |
|
value: 76.6685040168277 |
|
- type: nauc_precision_at_3_std |
|
value: 1.5867736131175436 |
|
- type: nauc_precision_at_5_diff1 |
|
value: 74.58750059437934 |
|
- type: nauc_precision_at_5_max |
|
value: 75.14502860946868 |
|
- type: nauc_precision_at_5_std |
|
value: 5.935474156377063 |
|
- type: nauc_recall_at_1000_diff1 |
|
value: .nan |
|
- type: nauc_recall_at_1000_max |
|
value: .nan |
|
- type: nauc_recall_at_1000_std |
|
value: .nan |
|
- type: nauc_recall_at_100_diff1 |
|
value: 48.6594637855143 |
|
- type: nauc_recall_at_100_max |
|
value: 65.39282379618471 |
|
- type: nauc_recall_at_100_std |
|
value: 24.616513271975943 |
|
- type: nauc_recall_at_10_diff1 |
|
value: 74.0241625105327 |
|
- type: nauc_recall_at_10_max |
|
value: 77.21015235362442 |
|
- type: nauc_recall_at_10_std |
|
value: 10.31518298376255 |
|
- type: nauc_recall_at_1_diff1 |
|
value: 83.07496179427446 |
|
- type: nauc_recall_at_1_max |
|
value: 70.1472835630915 |
|
- type: nauc_recall_at_1_std |
|
value: -4.892100745257178 |
|
- type: nauc_recall_at_20_diff1 |
|
value: 71.51073762838479 |
|
- type: nauc_recall_at_20_max |
|
value: 77.21568627450962 |
|
- type: nauc_recall_at_20_std |
|
value: 11.72362278244639 |
|
- type: nauc_recall_at_3_diff1 |
|
value: 75.7653513773791 |
|
- type: nauc_recall_at_3_max |
|
value: 76.66850401682761 |
|
- type: nauc_recall_at_3_std |
|
value: 1.5867736131174044 |
|
- type: nauc_recall_at_5_diff1 |
|
value: 74.58750059437952 |
|
- type: nauc_recall_at_5_max |
|
value: 75.1450286094688 |
|
- type: nauc_recall_at_5_std |
|
value: 5.935474156377355 |
|
- type: ndcg_at_1 |
|
value: 69.111 |
|
- type: ndcg_at_10 |
|
value: 80.204 |
|
- type: ndcg_at_100 |
|
value: 82.03399999999999 |
|
- type: ndcg_at_1000 |
|
value: 82.132 |
|
- type: ndcg_at_20 |
|
value: 81.119 |
|
- type: ndcg_at_3 |
|
value: 77.227 |
|
- type: ndcg_at_5 |
|
value: 78.781 |
|
- type: precision_at_1 |
|
value: 69.111 |
|
- type: precision_at_10 |
|
value: 9.089 |
|
- type: precision_at_100 |
|
value: 0.992 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_20 |
|
value: 4.7219999999999995 |
|
- type: precision_at_3 |
|
value: 27.556000000000004 |
|
- type: precision_at_5 |
|
value: 17.288999999999998 |
|
- type: recall_at_1 |
|
value: 69.111 |
|
- type: recall_at_10 |
|
value: 90.889 |
|
- type: recall_at_100 |
|
value: 99.222 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_20 |
|
value: 94.44399999999999 |
|
- type: recall_at_3 |
|
value: 82.667 |
|
- type: recall_at_5 |
|
value: 86.444 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: hun_Latn-eng_Latn |
|
name: MTEB BelebeleRetrieval (hun_Latn-eng_Latn) |
|
revision: 75b399394a9803252cfec289d103de462763db7c |
|
split: test |
|
type: facebook/belebele |
|
metrics: |
|
- type: main_score |
|
value: 75.395 |
|
- type: map_at_1 |
|
value: 62.666999999999994 |
|
- type: map_at_10 |
|
value: 71.30300000000001 |
|
- type: map_at_100 |
|
value: 71.774 |
|
- type: map_at_1000 |
|
value: 71.782 |
|
- type: map_at_20 |
|
value: 71.584 |
|
- type: map_at_3 |
|
value: 69.352 |
|
- type: map_at_5 |
|
value: 70.53 |
|
- type: mrr_at_1 |
|
value: 62.66666666666667 |
|
- type: mrr_at_10 |
|
value: 71.3027777777778 |
|
- type: mrr_at_100 |
|
value: 71.77425164712943 |
|
- type: mrr_at_1000 |
|
value: 71.78156792911966 |
|
- type: mrr_at_20 |
|
value: 71.58381913064578 |
|
- type: mrr_at_3 |
|
value: 69.35185185185185 |
|
- type: mrr_at_5 |
|
value: 70.52962962962965 |
|
- type: nauc_map_at_1000_diff1 |
|
value: 75.881602960504 |
|
- type: nauc_map_at_1000_max |
|
value: 68.66296274339753 |
|
- type: nauc_map_at_1000_std |
|
value: 7.517075184571474 |
|
- type: nauc_map_at_100_diff1 |
|
value: 75.8786843747508 |
|
- type: nauc_map_at_100_max |
|
value: 68.66828124033619 |
|
- type: nauc_map_at_100_std |
|
value: 7.525587871036576 |
|
- type: nauc_map_at_10_diff1 |
|
value: 75.5973833371205 |
|
- type: nauc_map_at_10_max |
|
value: 68.65021557056664 |
|
- type: nauc_map_at_10_std |
|
value: 7.562660323790659 |
|
- type: nauc_map_at_1_diff1 |
|
value: 79.25984371863814 |
|
- type: nauc_map_at_1_max |
|
value: 66.56457853173036 |
|
- type: nauc_map_at_1_std |
|
value: 3.9501186990857162 |
|
- type: nauc_map_at_20_diff1 |
|
value: 75.85810159356491 |
|
- type: nauc_map_at_20_max |
|
value: 68.76976086961005 |
|
- type: nauc_map_at_20_std |
|
value: 7.819971956110064 |
|
- type: nauc_map_at_3_diff1 |
|
value: 75.89565847594535 |
|
- type: nauc_map_at_3_max |
|
value: 68.86426509148927 |
|
- type: nauc_map_at_3_std |
|
value: 6.916006381683043 |
|
- type: nauc_map_at_5_diff1 |
|
value: 75.61832788795184 |
|
- type: nauc_map_at_5_max |
|
value: 68.66734871116772 |
|
- type: nauc_map_at_5_std |
|
value: 7.108445006055354 |
|
- type: nauc_mrr_at_1000_diff1 |
|
value: 75.881602960504 |
|
- type: nauc_mrr_at_1000_max |
|
value: 68.66296274339753 |
|
- type: nauc_mrr_at_1000_std |
|
value: 7.517075184571474 |
|
- type: nauc_mrr_at_100_diff1 |
|
value: 75.8786843747508 |
|
- type: nauc_mrr_at_100_max |
|
value: 68.66828124033619 |
|
- type: nauc_mrr_at_100_std |
|
value: 7.525587871036576 |
|
- type: nauc_mrr_at_10_diff1 |
|
value: 75.5973833371205 |
|
- type: nauc_mrr_at_10_max |
|
value: 68.65021557056664 |
|
- type: nauc_mrr_at_10_std |
|
value: 7.562660323790659 |
|
- type: nauc_mrr_at_1_diff1 |
|
value: 79.25984371863814 |
|
- type: nauc_mrr_at_1_max |
|
value: 66.56457853173036 |
|
- type: nauc_mrr_at_1_std |
|
value: 3.9501186990857162 |
|
- type: nauc_mrr_at_20_diff1 |
|
value: 75.85810159356491 |
|
- type: nauc_mrr_at_20_max |
|
value: 68.76976086961005 |
|
- type: nauc_mrr_at_20_std |
|
value: 7.819971956110064 |
|
- type: nauc_mrr_at_3_diff1 |
|
value: 75.89565847594535 |
|
- type: nauc_mrr_at_3_max |
|
value: 68.86426509148927 |
|
- type: nauc_mrr_at_3_std |
|
value: 6.916006381683043 |
|
- type: nauc_mrr_at_5_diff1 |
|
value: 75.61832788795184 |
|
- type: nauc_mrr_at_5_max |
|
value: 68.66734871116772 |
|
- type: nauc_mrr_at_5_std |
|
value: 7.108445006055354 |
|
- type: nauc_ndcg_at_1000_diff1 |
|
value: 75.2994418691362 |
|
- type: nauc_ndcg_at_1000_max |
|
value: 69.06426768849241 |
|
- type: nauc_ndcg_at_1000_std |
|
value: 8.535785357759078 |
|
- type: nauc_ndcg_at_100_diff1 |
|
value: 75.24120510322648 |
|
- type: nauc_ndcg_at_100_max |
|
value: 69.20598137031494 |
|
- type: nauc_ndcg_at_100_std |
|
value: 8.809082971368174 |
|
- type: nauc_ndcg_at_10_diff1 |
|
value: 73.85929786184265 |
|
- type: nauc_ndcg_at_10_max |
|
value: 69.35906735202224 |
|
- type: nauc_ndcg_at_10_std |
|
value: 9.803390649271314 |
|
- type: nauc_ndcg_at_1_diff1 |
|
value: 79.25984371863814 |
|
- type: nauc_ndcg_at_1_max |
|
value: 66.56457853173036 |
|
- type: nauc_ndcg_at_1_std |
|
value: 3.9501186990857162 |
|
- type: nauc_ndcg_at_20_diff1 |
|
value: 74.908346673254 |
|
- type: nauc_ndcg_at_20_max |
|
value: 69.94089128246969 |
|
- type: nauc_ndcg_at_20_std |
|
value: 11.040261082698441 |
|
- type: nauc_ndcg_at_3_diff1 |
|
value: 74.63723173221176 |
|
- type: nauc_ndcg_at_3_max |
|
value: 69.66882097579499 |
|
- type: nauc_ndcg_at_3_std |
|
value: 8.070938288986905 |
|
- type: nauc_ndcg_at_5_diff1 |
|
value: 74.03823148610475 |
|
- type: nauc_ndcg_at_5_max |
|
value: 69.35847081273427 |
|
- type: nauc_ndcg_at_5_std |
|
value: 8.544629619697409 |
|
- type: nauc_precision_at_1000_diff1 |
|
value: .nan |
|
- type: nauc_precision_at_1000_max |
|
value: .nan |
|
- type: nauc_precision_at_1000_std |
|
value: .nan |
|
- type: nauc_precision_at_100_diff1 |
|
value: 68.52007469654558 |
|
- type: nauc_precision_at_100_max |
|
value: 86.99813258636793 |
|
- type: nauc_precision_at_100_std |
|
value: 44.83193277310911 |
|
- type: nauc_precision_at_10_diff1 |
|
value: 63.121147314127334 |
|
- type: nauc_precision_at_10_max |
|
value: 73.48453534137256 |
|
- type: nauc_precision_at_10_std |
|
value: 24.29146523372198 |
|
- type: nauc_precision_at_1_diff1 |
|
value: 79.25984371863814 |
|
- type: nauc_precision_at_1_max |
|
value: 66.56457853173036 |
|
- type: nauc_precision_at_1_std |
|
value: 3.9501186990857162 |
|
- type: nauc_precision_at_20_diff1 |
|
value: 68.71215152727741 |
|
- type: nauc_precision_at_20_max |
|
value: 81.60730959050274 |
|
- type: nauc_precision_at_20_std |
|
value: 44.10897692410284 |
|
- type: nauc_precision_at_3_diff1 |
|
value: 70.11884635511014 |
|
- type: nauc_precision_at_3_max |
|
value: 72.53602624481753 |
|
- type: nauc_precision_at_3_std |
|
value: 12.235337922151093 |
|
- type: nauc_precision_at_5_diff1 |
|
value: 67.13640746909785 |
|
- type: nauc_precision_at_5_max |
|
value: 72.25763628849465 |
|
- type: nauc_precision_at_5_std |
|
value: 14.868376560758348 |
|
- type: nauc_recall_at_1000_diff1 |
|
value: .nan |
|
- type: nauc_recall_at_1000_max |
|
value: .nan |
|
- type: nauc_recall_at_1000_std |
|
value: .nan |
|
- type: nauc_recall_at_100_diff1 |
|
value: 68.52007469654454 |
|
- type: nauc_recall_at_100_max |
|
value: 86.99813258636755 |
|
- type: nauc_recall_at_100_std |
|
value: 44.83193277310874 |
|
- type: nauc_recall_at_10_diff1 |
|
value: 63.121147314127604 |
|
- type: nauc_recall_at_10_max |
|
value: 73.48453534137263 |
|
- type: nauc_recall_at_10_std |
|
value: 24.291465233722057 |
|
- type: nauc_recall_at_1_diff1 |
|
value: 79.25984371863814 |
|
- type: nauc_recall_at_1_max |
|
value: 66.56457853173036 |
|
- type: nauc_recall_at_1_std |
|
value: 3.9501186990857162 |
|
- type: nauc_recall_at_20_diff1 |
|
value: 68.71215152727751 |
|
- type: nauc_recall_at_20_max |
|
value: 81.60730959050267 |
|
- type: nauc_recall_at_20_std |
|
value: 44.10897692410295 |
|
- type: nauc_recall_at_3_diff1 |
|
value: 70.11884635511011 |
|
- type: nauc_recall_at_3_max |
|
value: 72.5360262448175 |
|
- type: nauc_recall_at_3_std |
|
value: 12.23533792215117 |
|
- type: nauc_recall_at_5_diff1 |
|
value: 67.13640746909788 |
|
- type: nauc_recall_at_5_max |
|
value: 72.25763628849458 |
|
- type: nauc_recall_at_5_std |
|
value: 14.868376560758476 |
|
- type: ndcg_at_1 |
|
value: 62.666999999999994 |
|
- type: ndcg_at_10 |
|
value: 75.395 |
|
- type: ndcg_at_100 |
|
value: 77.684 |
|
- type: ndcg_at_1000 |
|
value: 77.836 |
|
- type: ndcg_at_20 |
|
value: 76.41 |
|
- type: ndcg_at_3 |
|
value: 71.411 |
|
- type: ndcg_at_5 |
|
value: 73.52499999999999 |
|
- type: precision_at_1 |
|
value: 62.666999999999994 |
|
- type: precision_at_10 |
|
value: 8.822000000000001 |
|
- type: precision_at_100 |
|
value: 0.989 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_20 |
|
value: 4.611 |
|
- type: precision_at_3 |
|
value: 25.778000000000002 |
|
- type: precision_at_5 |
|
value: 16.489 |
|
- type: recall_at_1 |
|
value: 62.666999999999994 |
|
- type: recall_at_10 |
|
value: 88.222 |
|
- type: recall_at_100 |
|
value: 98.88900000000001 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_20 |
|
value: 92.22200000000001 |
|
- type: recall_at_3 |
|
value: 77.333 |
|
- type: recall_at_5 |
|
value: 82.44399999999999 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: eng_Latn-hun_Latn |
|
name: MTEB BelebeleRetrieval (eng_Latn-hun_Latn) |
|
revision: 75b399394a9803252cfec289d103de462763db7c |
|
split: test |
|
type: facebook/belebele |
|
metrics: |
|
- type: main_score |
|
value: 76.872 |
|
- type: map_at_1 |
|
value: 65.0 |
|
- type: map_at_10 |
|
value: 72.896 |
|
- type: map_at_100 |
|
value: 73.358 |
|
- type: map_at_1000 |
|
value: 73.36500000000001 |
|
- type: map_at_20 |
|
value: 73.2 |
|
- type: map_at_3 |
|
value: 70.907 |
|
- type: map_at_5 |
|
value: 72.002 |
|
- type: mrr_at_1 |
|
value: 65.0 |
|
- type: mrr_at_10 |
|
value: 72.89603174603175 |
|
- type: mrr_at_100 |
|
value: 73.3579205518051 |
|
- type: mrr_at_1000 |
|
value: 73.3654112460061 |
|
- type: mrr_at_20 |
|
value: 73.19952956877624 |
|
- type: mrr_at_3 |
|
value: 70.90740740740742 |
|
- type: mrr_at_5 |
|
value: 72.00185185185185 |
|
- type: nauc_map_at_1000_diff1 |
|
value: 77.77369357560062 |
|
- type: nauc_map_at_1000_max |
|
value: 70.94830494912476 |
|
- type: nauc_map_at_1000_std |
|
value: 6.522974403262641 |
|
- type: nauc_map_at_100_diff1 |
|
value: 77.77362905601957 |
|
- type: nauc_map_at_100_max |
|
value: 70.95095989526841 |
|
- type: nauc_map_at_100_std |
|
value: 6.5352551972569435 |
|
- type: nauc_map_at_10_diff1 |
|
value: 77.5247904322094 |
|
- type: nauc_map_at_10_max |
|
value: 71.02603340796348 |
|
- type: nauc_map_at_10_std |
|
value: 6.757278192437519 |
|
- type: nauc_map_at_1_diff1 |
|
value: 80.6553286136653 |
|
- type: nauc_map_at_1_max |
|
value: 68.35724812614716 |
|
- type: nauc_map_at_1_std |
|
value: 4.038661494923131 |
|
- type: nauc_map_at_20_diff1 |
|
value: 77.68304529150893 |
|
- type: nauc_map_at_20_max |
|
value: 70.95365196926124 |
|
- type: nauc_map_at_20_std |
|
value: 6.459235608230074 |
|
- type: nauc_map_at_3_diff1 |
|
value: 77.65108311925263 |
|
- type: nauc_map_at_3_max |
|
value: 71.27300229679268 |
|
- type: nauc_map_at_3_std |
|
value: 6.421413249698873 |
|
- type: nauc_map_at_5_diff1 |
|
value: 77.62058612073584 |
|
- type: nauc_map_at_5_max |
|
value: 71.28166308466814 |
|
- type: nauc_map_at_5_std |
|
value: 7.148832281239676 |
|
- type: nauc_mrr_at_1000_diff1 |
|
value: 77.77369357560062 |
|
- type: nauc_mrr_at_1000_max |
|
value: 70.94830494912476 |
|
- type: nauc_mrr_at_1000_std |
|
value: 6.522974403262641 |
|
- type: nauc_mrr_at_100_diff1 |
|
value: 77.77362905601957 |
|
- type: nauc_mrr_at_100_max |
|
value: 70.95095989526841 |
|
- type: nauc_mrr_at_100_std |
|
value: 6.5352551972569435 |
|
- type: nauc_mrr_at_10_diff1 |
|
value: 77.5247904322094 |
|
- type: nauc_mrr_at_10_max |
|
value: 71.02603340796348 |
|
- type: nauc_mrr_at_10_std |
|
value: 6.757278192437519 |
|
- type: nauc_mrr_at_1_diff1 |
|
value: 80.6553286136653 |
|
- type: nauc_mrr_at_1_max |
|
value: 68.35724812614716 |
|
- type: nauc_mrr_at_1_std |
|
value: 4.038661494923131 |
|
- type: nauc_mrr_at_20_diff1 |
|
value: 77.68304529150893 |
|
- type: nauc_mrr_at_20_max |
|
value: 70.95365196926124 |
|
- type: nauc_mrr_at_20_std |
|
value: 6.459235608230074 |
|
- type: nauc_mrr_at_3_diff1 |
|
value: 77.65108311925263 |
|
- type: nauc_mrr_at_3_max |
|
value: 71.27300229679268 |
|
- type: nauc_mrr_at_3_std |
|
value: 6.421413249698873 |
|
- type: nauc_mrr_at_5_diff1 |
|
value: 77.62058612073584 |
|
- type: nauc_mrr_at_5_max |
|
value: 71.28166308466814 |
|
- type: nauc_mrr_at_5_std |
|
value: 7.148832281239676 |
|
- type: nauc_ndcg_at_1000_diff1 |
|
value: 77.32834118213609 |
|
- type: nauc_ndcg_at_1000_max |
|
value: 71.28407034639005 |
|
- type: nauc_ndcg_at_1000_std |
|
value: 7.054791737753761 |
|
- type: nauc_ndcg_at_100_diff1 |
|
value: 77.3138740535263 |
|
- type: nauc_ndcg_at_100_max |
|
value: 71.38841430408482 |
|
- type: nauc_ndcg_at_100_std |
|
value: 7.495181794448738 |
|
- type: nauc_ndcg_at_10_diff1 |
|
value: 76.09808428652988 |
|
- type: nauc_ndcg_at_10_max |
|
value: 71.69225339870586 |
|
- type: nauc_ndcg_at_10_std |
|
value: 8.049899262534995 |
|
- type: nauc_ndcg_at_1_diff1 |
|
value: 80.6553286136653 |
|
- type: nauc_ndcg_at_1_max |
|
value: 68.35724812614716 |
|
- type: nauc_ndcg_at_1_std |
|
value: 4.038661494923131 |
|
- type: nauc_ndcg_at_20_diff1 |
|
value: 76.72021561109376 |
|
- type: nauc_ndcg_at_20_max |
|
value: 71.44696555289187 |
|
- type: nauc_ndcg_at_20_std |
|
value: 6.921724399287313 |
|
- type: nauc_ndcg_at_3_diff1 |
|
value: 76.56243231944167 |
|
- type: nauc_ndcg_at_3_max |
|
value: 72.19254115417164 |
|
- type: nauc_ndcg_at_3_std |
|
value: 7.41142651827797 |
|
- type: nauc_ndcg_at_5_diff1 |
|
value: 76.42995455832103 |
|
- type: nauc_ndcg_at_5_max |
|
value: 72.29448332833202 |
|
- type: nauc_ndcg_at_5_std |
|
value: 8.945757639249557 |
|
- type: nauc_precision_at_1000_diff1 |
|
value: .nan |
|
- type: nauc_precision_at_1000_max |
|
value: .nan |
|
- type: nauc_precision_at_1000_std |
|
value: .nan |
|
- type: nauc_precision_at_100_diff1 |
|
value: 75.5835667600378 |
|
- type: nauc_precision_at_100_max |
|
value: 81.91840838899772 |
|
- type: nauc_precision_at_100_std |
|
value: 50.65000359118282 |
|
- type: nauc_precision_at_10_diff1 |
|
value: 66.80290959473481 |
|
- type: nauc_precision_at_10_max |
|
value: 75.3540501756643 |
|
- type: nauc_precision_at_10_std |
|
value: 16.157652531050392 |
|
- type: nauc_precision_at_1_diff1 |
|
value: 80.6553286136653 |
|
- type: nauc_precision_at_1_max |
|
value: 68.35724812614716 |
|
- type: nauc_precision_at_1_std |
|
value: 4.038661494923131 |
|
- type: nauc_precision_at_20_diff1 |
|
value: 68.47710835746726 |
|
- type: nauc_precision_at_20_max |
|
value: 74.90069474117318 |
|
- type: nauc_precision_at_20_std |
|
value: 8.589311430786644 |
|
- type: nauc_precision_at_3_diff1 |
|
value: 72.69790694125835 |
|
- type: nauc_precision_at_3_max |
|
value: 75.40287436733661 |
|
- type: nauc_precision_at_3_std |
|
value: 10.97556244649672 |
|
- type: nauc_precision_at_5_diff1 |
|
value: 71.35323836023953 |
|
- type: nauc_precision_at_5_max |
|
value: 76.56660725505522 |
|
- type: nauc_precision_at_5_std |
|
value: 17.011489094336106 |
|
- type: nauc_recall_at_1000_diff1 |
|
value: .nan |
|
- type: nauc_recall_at_1000_max |
|
value: .nan |
|
- type: nauc_recall_at_1000_std |
|
value: .nan |
|
- type: nauc_recall_at_100_diff1 |
|
value: 75.58356676003798 |
|
- type: nauc_recall_at_100_max |
|
value: 81.9184083889972 |
|
- type: nauc_recall_at_100_std |
|
value: 50.65000359118012 |
|
- type: nauc_recall_at_10_diff1 |
|
value: 66.80290959473508 |
|
- type: nauc_recall_at_10_max |
|
value: 75.35405017566428 |
|
- type: nauc_recall_at_10_std |
|
value: 16.157652531050555 |
|
- type: nauc_recall_at_1_diff1 |
|
value: 80.6553286136653 |
|
- type: nauc_recall_at_1_max |
|
value: 68.35724812614716 |
|
- type: nauc_recall_at_1_std |
|
value: 4.038661494923131 |
|
- type: nauc_recall_at_20_diff1 |
|
value: 68.47710835746722 |
|
- type: nauc_recall_at_20_max |
|
value: 74.90069474117321 |
|
- type: nauc_recall_at_20_std |
|
value: 8.589311430787212 |
|
- type: nauc_recall_at_3_diff1 |
|
value: 72.69790694125835 |
|
- type: nauc_recall_at_3_max |
|
value: 75.40287436733665 |
|
- type: nauc_recall_at_3_std |
|
value: 10.97556244649683 |
|
- type: nauc_recall_at_5_diff1 |
|
value: 71.35323836023952 |
|
- type: nauc_recall_at_5_max |
|
value: 76.56660725505535 |
|
- type: nauc_recall_at_5_std |
|
value: 17.011489094336287 |
|
- type: ndcg_at_1 |
|
value: 65.0 |
|
- type: ndcg_at_10 |
|
value: 76.872 |
|
- type: ndcg_at_100 |
|
value: 78.914 |
|
- type: ndcg_at_1000 |
|
value: 79.103 |
|
- type: ndcg_at_20 |
|
value: 77.916 |
|
- type: ndcg_at_3 |
|
value: 72.763 |
|
- type: ndcg_at_5 |
|
value: 74.733 |
|
- type: precision_at_1 |
|
value: 65.0 |
|
- type: precision_at_10 |
|
value: 8.944 |
|
- type: precision_at_100 |
|
value: 0.9860000000000001 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_20 |
|
value: 4.672 |
|
- type: precision_at_3 |
|
value: 26.037 |
|
- type: precision_at_5 |
|
value: 16.578 |
|
- type: recall_at_1 |
|
value: 65.0 |
|
- type: recall_at_10 |
|
value: 89.444 |
|
- type: recall_at_100 |
|
value: 98.556 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_20 |
|
value: 93.444 |
|
- type: recall_at_3 |
|
value: 78.11099999999999 |
|
- type: recall_at_5 |
|
value: 82.889 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: eng_Latn-hun_Latn |
|
name: MTEB BibleNLPBitextMining (eng_Latn-hun_Latn) |
|
revision: 264a18480c529d9e922483839b4b9758e690b762 |
|
split: train |
|
type: davidstap/biblenlp-corpus-mmteb |
|
metrics: |
|
- type: accuracy |
|
value: 90.234375 |
|
- type: f1 |
|
value: 87.39583333333334 |
|
- type: main_score |
|
value: 87.39583333333334 |
|
- type: precision |
|
value: 86.16536458333334 |
|
- type: recall |
|
value: 90.234375 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-eng_Latn |
|
name: MTEB BibleNLPBitextMining (hun_Latn-eng_Latn) |
|
revision: 264a18480c529d9e922483839b4b9758e690b762 |
|
split: train |
|
type: davidstap/biblenlp-corpus-mmteb |
|
metrics: |
|
- type: accuracy |
|
value: 94.140625 |
|
- type: f1 |
|
value: 92.31770833333333 |
|
- type: main_score |
|
value: 92.31770833333333 |
|
- type: precision |
|
value: 91.47135416666667 |
|
- type: recall |
|
value: 94.140625 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: default |
|
name: MTEB HunSum2AbstractiveRetrieval (default) |
|
revision: 24e1445c8180d937f0a16f8ae8a62e77cc952e56 |
|
split: test |
|
type: SZTAKI-HLT/HunSum-2-abstractive |
|
metrics: |
|
- type: main_score |
|
value: 65.616 |
|
- type: map_at_1 |
|
value: 65.616 |
|
- type: map_at_10 |
|
value: 72.17 |
|
- type: map_at_100 |
|
value: 72.596 |
|
- type: map_at_1000 |
|
value: 72.615 |
|
- type: map_at_20 |
|
value: 72.418 |
|
- type: map_at_3 |
|
value: 70.596 |
|
- type: map_at_5 |
|
value: 71.532 |
|
- type: mrr_at_1 |
|
value: 65.61561561561562 |
|
- type: mrr_at_10 |
|
value: 72.17006689228913 |
|
- type: mrr_at_100 |
|
value: 72.59630726413003 |
|
- type: mrr_at_1000 |
|
value: 72.61533408042457 |
|
- type: mrr_at_20 |
|
value: 72.41848803381308 |
|
- type: mrr_at_3 |
|
value: 70.59559559559558 |
|
- type: mrr_at_5 |
|
value: 71.53153153153156 |
|
- type: nauc_map_at_1000_diff1 |
|
value: 82.11477551036097 |
|
- type: nauc_map_at_1000_max |
|
value: 69.93216235961877 |
|
- type: nauc_map_at_1000_std |
|
value: -4.901120373521347 |
|
- type: nauc_map_at_100_diff1 |
|
value: 82.10806987112343 |
|
- type: nauc_map_at_100_max |
|
value: 69.93576246377116 |
|
- type: nauc_map_at_100_std |
|
value: -4.888276482937281 |
|
- type: nauc_map_at_10_diff1 |
|
value: 82.04302562091283 |
|
- type: nauc_map_at_10_max |
|
value: 69.98073646418275 |
|
- type: nauc_map_at_10_std |
|
value: -4.939406021960221 |
|
- type: nauc_map_at_1_diff1 |
|
value: 85.20668775288361 |
|
- type: nauc_map_at_1_max |
|
value: 69.09789335497814 |
|
- type: nauc_map_at_1_std |
|
value: -6.442884331049151 |
|
- type: nauc_map_at_20_diff1 |
|
value: 82.0225558509114 |
|
- type: nauc_map_at_20_max |
|
value: 69.91856798991726 |
|
- type: nauc_map_at_20_std |
|
value: -4.865775113195285 |
|
- type: nauc_map_at_3_diff1 |
|
value: 82.27637852190405 |
|
- type: nauc_map_at_3_max |
|
value: 70.15220150711396 |
|
- type: nauc_map_at_3_std |
|
value: -5.459983423558685 |
|
- type: nauc_map_at_5_diff1 |
|
value: 81.99868387570363 |
|
- type: nauc_map_at_5_max |
|
value: 69.96808732325626 |
|
- type: nauc_map_at_5_std |
|
value: -5.066978528413986 |
|
- type: nauc_mrr_at_1000_diff1 |
|
value: 82.11477551036097 |
|
- type: nauc_mrr_at_1000_max |
|
value: 69.93216235961877 |
|
- type: nauc_mrr_at_1000_std |
|
value: -4.901120373521347 |
|
- type: nauc_mrr_at_100_diff1 |
|
value: 82.10806987112343 |
|
- type: nauc_mrr_at_100_max |
|
value: 69.93576246377116 |
|
- type: nauc_mrr_at_100_std |
|
value: -4.888276482937281 |
|
- type: nauc_mrr_at_10_diff1 |
|
value: 82.04302562091283 |
|
- type: nauc_mrr_at_10_max |
|
value: 69.98073646418275 |
|
- type: nauc_mrr_at_10_std |
|
value: -4.939406021960221 |
|
- type: nauc_mrr_at_1_diff1 |
|
value: 85.20668775288361 |
|
- type: nauc_mrr_at_1_max |
|
value: 69.09789335497814 |
|
- type: nauc_mrr_at_1_std |
|
value: -6.442884331049151 |
|
- type: nauc_mrr_at_20_diff1 |
|
value: 82.0225558509114 |
|
- type: nauc_mrr_at_20_max |
|
value: 69.91856798991726 |
|
- type: nauc_mrr_at_20_std |
|
value: -4.865775113195285 |
|
- type: nauc_mrr_at_3_diff1 |
|
value: 82.27637852190405 |
|
- type: nauc_mrr_at_3_max |
|
value: 70.15220150711396 |
|
- type: nauc_mrr_at_3_std |
|
value: -5.459983423558685 |
|
- type: nauc_mrr_at_5_diff1 |
|
value: 81.99868387570363 |
|
- type: nauc_mrr_at_5_max |
|
value: 69.96808732325626 |
|
- type: nauc_mrr_at_5_std |
|
value: -5.066978528413986 |
|
- type: nauc_ndcg_at_1000_diff1 |
|
value: 81.5126840771622 |
|
- type: nauc_ndcg_at_1000_max |
|
value: 70.12763018849093 |
|
- type: nauc_ndcg_at_1000_std |
|
value: -3.990763331803255 |
|
- type: nauc_ndcg_at_100_diff1 |
|
value: 81.35314690542201 |
|
- type: nauc_ndcg_at_100_max |
|
value: 70.29954500310211 |
|
- type: nauc_ndcg_at_100_std |
|
value: -3.4200000144945704 |
|
- type: nauc_ndcg_at_10_diff1 |
|
value: 80.79088866851619 |
|
- type: nauc_ndcg_at_10_max |
|
value: 70.32243683355195 |
|
- type: nauc_ndcg_at_10_std |
|
value: -3.661632655363061 |
|
- type: nauc_ndcg_at_1_diff1 |
|
value: 85.20668775288361 |
|
- type: nauc_ndcg_at_1_max |
|
value: 69.09789335497814 |
|
- type: nauc_ndcg_at_1_std |
|
value: -6.442884331049151 |
|
- type: nauc_ndcg_at_20_diff1 |
|
value: 80.65723696292129 |
|
- type: nauc_ndcg_at_20_max |
|
value: 70.0781627958487 |
|
- type: nauc_ndcg_at_20_std |
|
value: -3.3268850467427455 |
|
- type: nauc_ndcg_at_3_diff1 |
|
value: 81.30422620216359 |
|
- type: nauc_ndcg_at_3_max |
|
value: 70.57201377939089 |
|
- type: nauc_ndcg_at_3_std |
|
value: -4.867226820935226 |
|
- type: nauc_ndcg_at_5_diff1 |
|
value: 80.73570523236309 |
|
- type: nauc_ndcg_at_5_max |
|
value: 70.26219056465638 |
|
- type: nauc_ndcg_at_5_std |
|
value: -4.058787558085215 |
|
- type: nauc_precision_at_1000_diff1 |
|
value: 74.43924751465183 |
|
- type: nauc_precision_at_1000_max |
|
value: 86.51759703882918 |
|
- type: nauc_precision_at_1000_std |
|
value: 82.31711770484912 |
|
- type: nauc_precision_at_100_diff1 |
|
value: 75.70004441716591 |
|
- type: nauc_precision_at_100_max |
|
value: 77.61085332471666 |
|
- type: nauc_precision_at_100_std |
|
value: 22.502459762868824 |
|
- type: nauc_precision_at_10_diff1 |
|
value: 74.62622879461453 |
|
- type: nauc_precision_at_10_max |
|
value: 72.02341591543264 |
|
- type: nauc_precision_at_10_std |
|
value: 3.227096017453475 |
|
- type: nauc_precision_at_1_diff1 |
|
value: 85.20668775288361 |
|
- type: nauc_precision_at_1_max |
|
value: 69.09789335497814 |
|
- type: nauc_precision_at_1_std |
|
value: -6.442884331049151 |
|
- type: nauc_precision_at_20_diff1 |
|
value: 71.82812396378273 |
|
- type: nauc_precision_at_20_max |
|
value: 70.67250776468195 |
|
- type: nauc_precision_at_20_std |
|
value: 7.67961919934869 |
|
- type: nauc_precision_at_3_diff1 |
|
value: 78.00819461913801 |
|
- type: nauc_precision_at_3_max |
|
value: 72.02361600228878 |
|
- type: nauc_precision_at_3_std |
|
value: -2.749950579759329 |
|
- type: nauc_precision_at_5_diff1 |
|
value: 75.76784513448565 |
|
- type: nauc_precision_at_5_max |
|
value: 71.38070257500367 |
|
- type: nauc_precision_at_5_std |
|
value: 0.14048678160511355 |
|
- type: nauc_recall_at_1000_diff1 |
|
value: 74.43924751465049 |
|
- type: nauc_recall_at_1000_max |
|
value: 86.51759703883047 |
|
- type: nauc_recall_at_1000_std |
|
value: 82.31711770484824 |
|
- type: nauc_recall_at_100_diff1 |
|
value: 75.70004441716617 |
|
- type: nauc_recall_at_100_max |
|
value: 77.61085332471673 |
|
- type: nauc_recall_at_100_std |
|
value: 22.502459762868686 |
|
- type: nauc_recall_at_10_diff1 |
|
value: 74.62622879461455 |
|
- type: nauc_recall_at_10_max |
|
value: 72.02341591543261 |
|
- type: nauc_recall_at_10_std |
|
value: 3.2270960174534973 |
|
- type: nauc_recall_at_1_diff1 |
|
value: 85.20668775288361 |
|
- type: nauc_recall_at_1_max |
|
value: 69.09789335497814 |
|
- type: nauc_recall_at_1_std |
|
value: -6.442884331049151 |
|
- type: nauc_recall_at_20_diff1 |
|
value: 71.82812396378263 |
|
- type: nauc_recall_at_20_max |
|
value: 70.6725077646819 |
|
- type: nauc_recall_at_20_std |
|
value: 7.679619199348971 |
|
- type: nauc_recall_at_3_diff1 |
|
value: 78.00819461913807 |
|
- type: nauc_recall_at_3_max |
|
value: 72.02361600228886 |
|
- type: nauc_recall_at_3_std |
|
value: -2.749950579759317 |
|
- type: nauc_recall_at_5_diff1 |
|
value: 75.76784513448574 |
|
- type: nauc_recall_at_5_max |
|
value: 71.38070257500377 |
|
- type: nauc_recall_at_5_std |
|
value: 0.1404867816050954 |
|
- type: ndcg_at_1 |
|
value: 65.616 |
|
- type: ndcg_at_10 |
|
value: 75.372 |
|
- type: ndcg_at_100 |
|
value: 77.536 |
|
- type: ndcg_at_1000 |
|
value: 78.051 |
|
- type: ndcg_at_20 |
|
value: 76.281 |
|
- type: ndcg_at_3 |
|
value: 72.162 |
|
- type: ndcg_at_5 |
|
value: 73.83999999999999 |
|
- type: precision_at_1 |
|
value: 65.616 |
|
- type: precision_at_10 |
|
value: 8.544 |
|
- type: precision_at_100 |
|
value: 0.9570000000000001 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_20 |
|
value: 4.452 |
|
- type: precision_at_3 |
|
value: 25.558999999999997 |
|
- type: precision_at_5 |
|
value: 16.146 |
|
- type: recall_at_1 |
|
value: 65.616 |
|
- type: recall_at_10 |
|
value: 85.435 |
|
- type: recall_at_100 |
|
value: 95.746 |
|
- type: recall_at_1000 |
|
value: 99.8 |
|
- type: recall_at_20 |
|
value: 89.039 |
|
- type: recall_at_3 |
|
value: 76.67699999999999 |
|
- type: recall_at_5 |
|
value: 80.731 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: hu |
|
name: MTEB MassiveIntentClassification (hu) |
|
revision: 4672e20407010da34463acc759c162ca9734bca6 |
|
split: test |
|
type: mteb/amazon_massive_intent |
|
metrics: |
|
- type: accuracy |
|
value: 61.93678547410896 |
|
- type: f1 |
|
value: 59.18089758951288 |
|
- type: f1_weighted |
|
value: 62.33480431880768 |
|
- type: main_score |
|
value: 61.93678547410896 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: hu |
|
name: MTEB MassiveIntentClassification (hu) |
|
revision: 4672e20407010da34463acc759c162ca9734bca6 |
|
split: validation |
|
type: mteb/amazon_massive_intent |
|
metrics: |
|
- type: accuracy |
|
value: 61.65272995573046 |
|
- type: f1 |
|
value: 59.300294731108615 |
|
- type: f1_weighted |
|
value: 61.95329485924452 |
|
- type: main_score |
|
value: 61.65272995573046 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: hu |
|
name: MTEB MassiveScenarioClassification (hu) |
|
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 |
|
split: test |
|
type: mteb/amazon_massive_scenario |
|
metrics: |
|
- type: accuracy |
|
value: 66.93342299932749 |
|
- type: f1 |
|
value: 66.09393745126239 |
|
- type: f1_weighted |
|
value: 67.11013732647363 |
|
- type: main_score |
|
value: 66.93342299932749 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: hu |
|
name: MTEB MassiveScenarioClassification (hu) |
|
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 |
|
split: validation |
|
type: mteb/amazon_massive_scenario |
|
metrics: |
|
- type: accuracy |
|
value: 66.27643876045252 |
|
- type: f1 |
|
value: 65.84263838771432 |
|
- type: f1_weighted |
|
value: 66.48633782928637 |
|
- type: main_score |
|
value: 66.27643876045252 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: hu |
|
name: MTEB MultiEURLEXMultilabelClassification (hu) |
|
revision: 2aea5a6dc8fdcfeca41d0fb963c0a338930bde5c |
|
split: test |
|
type: mteb/eurlex-multilingual |
|
metrics: |
|
- type: accuracy |
|
value: 2.6879999999999997 |
|
- type: f1 |
|
value: 25.112198433514166 |
|
- type: lrap |
|
value: 41.790686190475135 |
|
- type: main_score |
|
value: 2.6879999999999997 |
|
task: |
|
type: MultilabelClassification |
|
- dataset: |
|
config: arb_Arab-hun_Latn |
|
name: MTEB NTREXBitextMining (arb_Arab-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 86.07911867801702 |
|
- type: f1 |
|
value: 82.34184610248707 |
|
- type: main_score |
|
value: 82.34184610248707 |
|
- type: precision |
|
value: 80.65598397596395 |
|
- type: recall |
|
value: 86.07911867801702 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: ben_Beng-hun_Latn |
|
name: MTEB NTREXBitextMining (ben_Beng-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 40.91136705057586 |
|
- type: f1 |
|
value: 36.01175728956383 |
|
- type: main_score |
|
value: 36.01175728956383 |
|
- type: precision |
|
value: 34.36916434339978 |
|
- type: recall |
|
value: 40.91136705057586 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: deu_Latn-hun_Latn |
|
name: MTEB NTREXBitextMining (deu_Latn-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 93.54031046569855 |
|
- type: f1 |
|
value: 91.73760640961443 |
|
- type: main_score |
|
value: 91.73760640961443 |
|
- type: precision |
|
value: 90.87130696044066 |
|
- type: recall |
|
value: 93.54031046569855 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: ell_Grek-hun_Latn |
|
name: MTEB NTREXBitextMining (ell_Grek-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 91.3870806209314 |
|
- type: f1 |
|
value: 88.87998664663662 |
|
- type: main_score |
|
value: 88.87998664663662 |
|
- type: precision |
|
value: 87.69821398764815 |
|
- type: recall |
|
value: 91.3870806209314 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: eng_Latn-hun_Latn |
|
name: MTEB NTREXBitextMining (eng_Latn-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 94.69203805708563 |
|
- type: f1 |
|
value: 93.04790519112001 |
|
- type: main_score |
|
value: 93.04790519112001 |
|
- type: precision |
|
value: 92.24670338841595 |
|
- type: recall |
|
value: 94.69203805708563 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: fas_Arab-hun_Latn |
|
name: MTEB NTREXBitextMining (fas_Arab-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 89.43415122684027 |
|
- type: f1 |
|
value: 86.48138874979135 |
|
- type: main_score |
|
value: 86.48138874979135 |
|
- type: precision |
|
value: 85.1235186112502 |
|
- type: recall |
|
value: 89.43415122684027 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: fin_Latn-hun_Latn |
|
name: MTEB NTREXBitextMining (fin_Latn-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 90.73610415623435 |
|
- type: f1 |
|
value: 88.10716074111167 |
|
- type: main_score |
|
value: 88.10716074111167 |
|
- type: precision |
|
value: 86.84860624269739 |
|
- type: recall |
|
value: 90.73610415623435 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: fra_Latn-hun_Latn |
|
name: MTEB NTREXBitextMining (fra_Latn-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 93.03955933900852 |
|
- type: f1 |
|
value: 90.97312635620098 |
|
- type: main_score |
|
value: 90.97312635620098 |
|
- type: precision |
|
value: 89.97245868803205 |
|
- type: recall |
|
value: 93.03955933900852 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: heb_Hebr-hun_Latn |
|
name: MTEB NTREXBitextMining (heb_Hebr-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 88.03204807210815 |
|
- type: f1 |
|
value: 84.71540644299783 |
|
- type: main_score |
|
value: 84.71540644299783 |
|
- type: precision |
|
value: 83.14972458688032 |
|
- type: recall |
|
value: 88.03204807210815 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hin_Deva-hun_Latn |
|
name: MTEB NTREXBitextMining (hin_Deva-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 86.9804707060591 |
|
- type: f1 |
|
value: 83.51527290936404 |
|
- type: main_score |
|
value: 83.51527290936404 |
|
- type: precision |
|
value: 81.92038057085628 |
|
- type: recall |
|
value: 86.9804707060591 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-arb_Arab |
|
name: MTEB NTREXBitextMining (hun_Latn-arb_Arab) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 86.47971957936905 |
|
- type: f1 |
|
value: 82.83592054748789 |
|
- type: main_score |
|
value: 82.83592054748789 |
|
- type: precision |
|
value: 81.18260724419963 |
|
- type: recall |
|
value: 86.47971957936905 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-ben_Beng |
|
name: MTEB NTREXBitextMining (hun_Latn-ben_Beng) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 41.86279419128693 |
|
- type: f1 |
|
value: 33.232896964494365 |
|
- type: main_score |
|
value: 33.232896964494365 |
|
- type: precision |
|
value: 30.249043850094402 |
|
- type: recall |
|
value: 41.86279419128693 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-deu_Latn |
|
name: MTEB NTREXBitextMining (hun_Latn-deu_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 93.94091136705057 |
|
- type: f1 |
|
value: 92.14989150392255 |
|
- type: main_score |
|
value: 92.14989150392255 |
|
- type: precision |
|
value: 91.28275746953764 |
|
- type: recall |
|
value: 93.94091136705057 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-ell_Grek |
|
name: MTEB NTREXBitextMining (hun_Latn-ell_Grek) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 92.8392588883325 |
|
- type: f1 |
|
value: 90.86296110832916 |
|
- type: main_score |
|
value: 90.86296110832916 |
|
- type: precision |
|
value: 89.93072942747456 |
|
- type: recall |
|
value: 92.8392588883325 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-eng_Latn |
|
name: MTEB NTREXBitextMining (hun_Latn-eng_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 95.54331497245869 |
|
- type: f1 |
|
value: 94.2330161909531 |
|
- type: main_score |
|
value: 94.2330161909531 |
|
- type: precision |
|
value: 93.59873143047905 |
|
- type: recall |
|
value: 95.54331497245869 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-fas_Arab |
|
name: MTEB NTREXBitextMining (hun_Latn-fas_Arab) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 89.43415122684027 |
|
- type: f1 |
|
value: 86.54481722583876 |
|
- type: main_score |
|
value: 86.54481722583876 |
|
- type: precision |
|
value: 85.20447337673176 |
|
- type: recall |
|
value: 89.43415122684027 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-fin_Latn |
|
name: MTEB NTREXBitextMining (hun_Latn-fin_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 89.58437656484726 |
|
- type: f1 |
|
value: 86.70839592722417 |
|
- type: main_score |
|
value: 86.70839592722417 |
|
- type: precision |
|
value: 85.37389417459522 |
|
- type: recall |
|
value: 89.58437656484726 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-fra_Latn |
|
name: MTEB NTREXBitextMining (hun_Latn-fra_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 92.13820731096645 |
|
- type: f1 |
|
value: 89.883158070439 |
|
- type: main_score |
|
value: 89.883158070439 |
|
- type: precision |
|
value: 88.81822734101151 |
|
- type: recall |
|
value: 92.13820731096645 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-heb_Hebr |
|
name: MTEB NTREXBitextMining (hun_Latn-heb_Hebr) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 86.93039559339009 |
|
- type: f1 |
|
value: 83.32336166587544 |
|
- type: main_score |
|
value: 83.32336166587544 |
|
- type: precision |
|
value: 81.67334334835587 |
|
- type: recall |
|
value: 86.93039559339009 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-hin_Deva |
|
name: MTEB NTREXBitextMining (hun_Latn-hin_Deva) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 85.97896845267901 |
|
- type: f1 |
|
value: 82.34685361375396 |
|
- type: main_score |
|
value: 82.34685361375396 |
|
- type: precision |
|
value: 80.72859288933401 |
|
- type: recall |
|
value: 85.97896845267901 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-ind_Latn |
|
name: MTEB NTREXBitextMining (hun_Latn-ind_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 92.33850776164246 |
|
- type: f1 |
|
value: 90.06843598731432 |
|
- type: main_score |
|
value: 90.06843598731432 |
|
- type: precision |
|
value: 88.97512936070773 |
|
- type: recall |
|
value: 92.33850776164246 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-jpn_Jpan |
|
name: MTEB NTREXBitextMining (hun_Latn-jpn_Jpan) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 87.48122183274913 |
|
- type: f1 |
|
value: 84.08779836421299 |
|
- type: main_score |
|
value: 84.08779836421299 |
|
- type: precision |
|
value: 82.53380070105159 |
|
- type: recall |
|
value: 87.48122183274913 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-kor_Hang |
|
name: MTEB NTREXBitextMining (hun_Latn-kor_Hang) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 84.82724086129194 |
|
- type: f1 |
|
value: 80.77859213062017 |
|
- type: main_score |
|
value: 80.77859213062017 |
|
- type: precision |
|
value: 78.98931730929726 |
|
- type: recall |
|
value: 84.82724086129194 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-lav_Latn |
|
name: MTEB NTREXBitextMining (hun_Latn-lav_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 89.9849774661993 |
|
- type: f1 |
|
value: 87.0422300116842 |
|
- type: main_score |
|
value: 87.0422300116842 |
|
- type: precision |
|
value: 85.65932231680856 |
|
- type: recall |
|
value: 89.9849774661993 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-lit_Latn |
|
name: MTEB NTREXBitextMining (hun_Latn-lit_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 90.38557836755132 |
|
- type: f1 |
|
value: 87.60474044399933 |
|
- type: main_score |
|
value: 87.60474044399933 |
|
- type: precision |
|
value: 86.28776498080455 |
|
- type: recall |
|
value: 90.38557836755132 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-nld_Latn |
|
name: MTEB NTREXBitextMining (hun_Latn-nld_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 93.64046069103655 |
|
- type: f1 |
|
value: 91.81271907861792 |
|
- type: main_score |
|
value: 91.81271907861792 |
|
- type: precision |
|
value: 90.93807377733266 |
|
- type: recall |
|
value: 93.64046069103655 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-pol_Latn |
|
name: MTEB NTREXBitextMining (hun_Latn-pol_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 91.2368552829244 |
|
- type: f1 |
|
value: 88.85924124281661 |
|
- type: main_score |
|
value: 88.85924124281661 |
|
- type: precision |
|
value: 87.7524620263729 |
|
- type: recall |
|
value: 91.2368552829244 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-por_Latn |
|
name: MTEB NTREXBitextMining (hun_Latn-por_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 93.18978467701552 |
|
- type: f1 |
|
value: 91.15172759138709 |
|
- type: main_score |
|
value: 91.15172759138709 |
|
- type: precision |
|
value: 90.19362376898682 |
|
- type: recall |
|
value: 93.18978467701552 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-rus_Cyrl |
|
name: MTEB NTREXBitextMining (hun_Latn-rus_Cyrl) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 92.23835753630446 |
|
- type: f1 |
|
value: 89.9382406943749 |
|
- type: main_score |
|
value: 89.9382406943749 |
|
- type: precision |
|
value: 88.85411450509096 |
|
- type: recall |
|
value: 92.23835753630446 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-spa_Latn |
|
name: MTEB NTREXBitextMining (hun_Latn-spa_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 93.34001001502253 |
|
- type: f1 |
|
value: 91.47888499415792 |
|
- type: main_score |
|
value: 91.47888499415792 |
|
- type: precision |
|
value: 90.58587881822734 |
|
- type: recall |
|
value: 93.34001001502253 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-swa_Latn |
|
name: MTEB NTREXBitextMining (hun_Latn-swa_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 40.76114171256886 |
|
- type: f1 |
|
value: 32.341475401874824 |
|
- type: main_score |
|
value: 32.341475401874824 |
|
- type: precision |
|
value: 29.515621549076144 |
|
- type: recall |
|
value: 40.76114171256886 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-swe_Latn |
|
name: MTEB NTREXBitextMining (hun_Latn-swe_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 93.44016024036054 |
|
- type: f1 |
|
value: 91.490569187114 |
|
- type: main_score |
|
value: 91.490569187114 |
|
- type: precision |
|
value: 90.56501418794859 |
|
- type: recall |
|
value: 93.44016024036054 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-tam_Taml |
|
name: MTEB NTREXBitextMining (hun_Latn-tam_Taml) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 27.591387080620933 |
|
- type: f1 |
|
value: 18.875023187991868 |
|
- type: main_score |
|
value: 18.875023187991868 |
|
- type: precision |
|
value: 16.43982939607956 |
|
- type: recall |
|
value: 27.591387080620933 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-tur_Latn |
|
name: MTEB NTREXBitextMining (hun_Latn-tur_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 91.3870806209314 |
|
- type: f1 |
|
value: 88.90836254381573 |
|
- type: main_score |
|
value: 88.90836254381573 |
|
- type: precision |
|
value: 87.72325154398266 |
|
- type: recall |
|
value: 91.3870806209314 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-vie_Latn |
|
name: MTEB NTREXBitextMining (hun_Latn-vie_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 91.13670505758637 |
|
- type: f1 |
|
value: 88.62054987242769 |
|
- type: main_score |
|
value: 88.62054987242769 |
|
- type: precision |
|
value: 87.41445501585711 |
|
- type: recall |
|
value: 91.13670505758637 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-zho_Hant |
|
name: MTEB NTREXBitextMining (hun_Latn-zho_Hant) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 90.33550325488233 |
|
- type: f1 |
|
value: 87.71574027708229 |
|
- type: main_score |
|
value: 87.71574027708229 |
|
- type: precision |
|
value: 86.53861744998451 |
|
- type: recall |
|
value: 90.33550325488233 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn-zul_Latn |
|
name: MTEB NTREXBitextMining (hun_Latn-zul_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 17.626439659489236 |
|
- type: f1 |
|
value: 11.826546194507252 |
|
- type: main_score |
|
value: 11.826546194507252 |
|
- type: precision |
|
value: 10.340822386979896 |
|
- type: recall |
|
value: 17.626439659489236 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: ind_Latn-hun_Latn |
|
name: MTEB NTREXBitextMining (ind_Latn-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 92.93940911367051 |
|
- type: f1 |
|
value: 90.91470539142045 |
|
- type: main_score |
|
value: 90.91470539142045 |
|
- type: precision |
|
value: 89.96411283592055 |
|
- type: recall |
|
value: 92.93940911367051 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: jpn_Jpan-hun_Latn |
|
name: MTEB NTREXBitextMining (jpn_Jpan-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 88.33249874812218 |
|
- type: f1 |
|
value: 85.07260891337006 |
|
- type: main_score |
|
value: 85.07260891337006 |
|
- type: precision |
|
value: 83.54114505090969 |
|
- type: recall |
|
value: 88.33249874812218 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: kor_Hang-hun_Latn |
|
name: MTEB NTREXBitextMining (kor_Hang-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 86.07911867801702 |
|
- type: f1 |
|
value: 82.32348522784176 |
|
- type: main_score |
|
value: 82.32348522784176 |
|
- type: precision |
|
value: 80.59339008512768 |
|
- type: recall |
|
value: 86.07911867801702 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: lav_Latn-hun_Latn |
|
name: MTEB NTREXBitextMining (lav_Latn-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 90.73610415623435 |
|
- type: f1 |
|
value: 88.25833989078856 |
|
- type: main_score |
|
value: 88.25833989078856 |
|
- type: precision |
|
value: 87.09480887998664 |
|
- type: recall |
|
value: 90.73610415623435 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: lit_Latn-hun_Latn |
|
name: MTEB NTREXBitextMining (lit_Latn-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 91.88783174762143 |
|
- type: f1 |
|
value: 89.59105324653646 |
|
- type: main_score |
|
value: 89.59105324653646 |
|
- type: precision |
|
value: 88.49106993824068 |
|
- type: recall |
|
value: 91.88783174762143 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: nld_Latn-hun_Latn |
|
name: MTEB NTREXBitextMining (nld_Latn-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 92.98948422633951 |
|
- type: f1 |
|
value: 90.93139709564348 |
|
- type: main_score |
|
value: 90.93139709564348 |
|
- type: precision |
|
value: 89.93072942747456 |
|
- type: recall |
|
value: 92.98948422633951 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: pol_Latn-hun_Latn |
|
name: MTEB NTREXBitextMining (pol_Latn-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 91.4371557336004 |
|
- type: f1 |
|
value: 89.10699382406943 |
|
- type: main_score |
|
value: 89.10699382406943 |
|
- type: precision |
|
value: 88.00701051577366 |
|
- type: recall |
|
value: 91.4371557336004 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: por_Latn-hun_Latn |
|
name: MTEB NTREXBitextMining (por_Latn-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 92.98948422633951 |
|
- type: f1 |
|
value: 91.02320146886997 |
|
- type: main_score |
|
value: 91.02320146886997 |
|
- type: precision |
|
value: 90.09764646970456 |
|
- type: recall |
|
value: 92.98948422633951 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: rus_Cyrl-hun_Latn |
|
name: MTEB NTREXBitextMining (rus_Cyrl-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 90.98647971957938 |
|
- type: f1 |
|
value: 88.3942580537473 |
|
- type: main_score |
|
value: 88.3942580537473 |
|
- type: precision |
|
value: 87.16992154899015 |
|
- type: recall |
|
value: 90.98647971957938 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: spa_Latn-hun_Latn |
|
name: MTEB NTREXBitextMining (spa_Latn-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 93.13970956434652 |
|
- type: f1 |
|
value: 91.19846436321149 |
|
- type: main_score |
|
value: 91.19846436321149 |
|
- type: precision |
|
value: 90.26456351193457 |
|
- type: recall |
|
value: 93.13970956434652 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: swa_Latn-hun_Latn |
|
name: MTEB NTREXBitextMining (swa_Latn-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 39.05858788182273 |
|
- type: f1 |
|
value: 33.98323169908456 |
|
- type: main_score |
|
value: 33.98323169908456 |
|
- type: precision |
|
value: 32.41376425186998 |
|
- type: recall |
|
value: 39.05858788182273 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: swe_Latn-hun_Latn |
|
name: MTEB NTREXBitextMining (swe_Latn-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 93.03955933900852 |
|
- type: f1 |
|
value: 91.01485561675847 |
|
- type: main_score |
|
value: 91.01485561675847 |
|
- type: precision |
|
value: 90.04757135703555 |
|
- type: recall |
|
value: 93.03955933900852 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: tam_Taml-hun_Latn |
|
name: MTEB NTREXBitextMining (tam_Taml-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 27.341011517275916 |
|
- type: f1 |
|
value: 24.114490363365103 |
|
- type: main_score |
|
value: 24.114490363365103 |
|
- type: precision |
|
value: 23.01465131730559 |
|
- type: recall |
|
value: 27.341011517275916 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: tur_Latn-hun_Latn |
|
name: MTEB NTREXBitextMining (tur_Latn-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 91.03655483224837 |
|
- type: f1 |
|
value: 88.4843932565515 |
|
- type: main_score |
|
value: 88.4843932565515 |
|
- type: precision |
|
value: 87.31180103488568 |
|
- type: recall |
|
value: 91.03655483224837 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: vie_Latn-hun_Latn |
|
name: MTEB NTREXBitextMining (vie_Latn-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 90.38557836755132 |
|
- type: f1 |
|
value: 87.73493573693874 |
|
- type: main_score |
|
value: 87.73493573693874 |
|
- type: precision |
|
value: 86.5005842096478 |
|
- type: recall |
|
value: 90.38557836755132 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: zho_Hant-hun_Latn |
|
name: MTEB NTREXBitextMining (zho_Hant-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 90.33550325488233 |
|
- type: f1 |
|
value: 87.59806376231013 |
|
- type: main_score |
|
value: 87.59806376231013 |
|
- type: precision |
|
value: 86.3253213153063 |
|
- type: recall |
|
value: 90.33550325488233 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: zul_Latn-hun_Latn |
|
name: MTEB NTREXBitextMining (zul_Latn-hun_Latn) |
|
revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 |
|
split: test |
|
type: mteb/NTREX |
|
metrics: |
|
- type: accuracy |
|
value: 17.676514772158235 |
|
- type: f1 |
|
value: 13.907186347256669 |
|
- type: main_score |
|
value: 13.907186347256669 |
|
- type: precision |
|
value: 12.923210518264245 |
|
- type: recall |
|
value: 17.676514772158235 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: rom-hun |
|
name: MTEB RomaTalesBitextMining (rom-hun) |
|
revision: f4394dbca6845743cd33eba77431767b232ef489 |
|
split: test |
|
type: kardosdrur/roma-tales |
|
metrics: |
|
- type: accuracy |
|
value: 5.116279069767442 |
|
- type: f1 |
|
value: 1.8488798023681745 |
|
- type: main_score |
|
value: 1.8488798023681745 |
|
- type: precision |
|
value: 1.472523686477175 |
|
- type: recall |
|
value: 5.116279069767442 |
|
task: |
|
type: BitextMining |
|
- dataset: |
|
config: hun_Latn |
|
name: MTEB SIB200Classification (hun_Latn) |
|
revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b |
|
split: test |
|
type: mteb/sib200 |
|
metrics: |
|
- type: accuracy |
|
value: 68.43137254901961 |
|
- type: f1 |
|
value: 67.64424216338097 |
|
- type: f1_weighted |
|
value: 68.34815340541722 |
|
- type: main_score |
|
value: 68.43137254901961 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: hun_Latn |
|
name: MTEB SIB200Classification (hun_Latn) |
|
revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b |
|
split: train |
|
type: mteb/sib200 |
|
metrics: |
|
- type: accuracy |
|
value: 69.04422253922966 |
|
- type: f1 |
|
value: 67.9515950437183 |
|
- type: f1_weighted |
|
value: 69.07832158763667 |
|
- type: main_score |
|
value: 69.04422253922966 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: hun_Latn |
|
name: MTEB SIB200Classification (hun_Latn) |
|
revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b |
|
split: validation |
|
type: mteb/sib200 |
|
metrics: |
|
- type: accuracy |
|
value: 64.54545454545453 |
|
- type: f1 |
|
value: 63.78373491440388 |
|
- type: f1_weighted |
|
value: 64.98788954233397 |
|
- type: main_score |
|
value: 64.54545454545453 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: hun_Latn |
|
name: MTEB SIB200ClusteringS2S (hun_Latn) |
|
revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b |
|
split: test |
|
type: mteb/sib200 |
|
metrics: |
|
- type: main_score |
|
value: 34.91858402487903 |
|
- type: v_measure |
|
value: 34.91858402487903 |
|
- type: v_measure_std |
|
value: 3.377463869658173 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: hun-eng |
|
name: MTEB Tatoeba (hun-eng) |
|
revision: 69e8f12da6e31d59addadda9a9c8a2e601a0e282 |
|
split: test |
|
type: mteb/tatoeba-bitext-mining |
|
metrics: |
|
- type: accuracy |
|
value: 91.5 |
|
- type: f1 |
|
value: 89.06666666666666 |
|
- type: main_score |
|
value: 89.06666666666666 |
|
- type: precision |
|
value: 87.9 |
|
- type: recall |
|
value: 91.5 |
|
task: |
|
type: BitextMining |
|
tags: |
|
- mteb |
|
--- |
|
|
|
# paraphrase-multilingual-MiniLM-L12-hu-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the train dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision ae06c001a2546bef168b9bf8f570ccb1a16aaa27 --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- train |
|
- **Language:** hu |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("karsar/paraphrase-multilingual-MiniLM-L12-hu-v2") |
|
# Run inference |
|
sentences = [ |
|
'Az emberek alszanak.', |
|
'Egy apa és a fia ölelgeti alvás közben.', |
|
'Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy bokrok és egy sor viktoriánus stílusú épület, melyek közül sokat a kép jobb oldalán lévő erős elmosódás tesz kivehetetlenné.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
* Dataset: `all-nli-dev` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| cosine_accuracy | 0.9918 | |
|
| dot_accuracy | 0.0102 | |
|
| manhattan_accuracy | 0.99 | |
|
| euclidean_accuracy | 0.99 | |
|
| **max_accuracy** | **0.9918** | |
|
|
|
#### Triplet |
|
* Dataset: `all-nli-test` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| cosine_accuracy | 0.9938 | |
|
| dot_accuracy | 0.008 | |
|
| manhattan_accuracy | 0.9929 | |
|
| euclidean_accuracy | 0.9924 | |
|
| **max_accuracy** | **0.9938** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### train |
|
|
|
* Dataset: train |
|
* Size: 1,044,013 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 11.73 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.24 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.07 tokens</li><li>max: 53 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:---------------------------------------------------------------------------|:----------------------------------------------|:---------------------------------------------------------------| |
|
| <code>Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett.</code> | <code>Egy ember a szabadban, lóháton.</code> | <code>Egy ember egy étteremben van, és omlettet rendel.</code> | |
|
| <code>Gyerekek mosolyogva és integetett a kamera</code> | <code>Gyermekek vannak jelen</code> | <code>A gyerekek homlokot rántanak</code> | |
|
| <code>Egy fiú ugrál a gördeszkát a közepén egy piros híd.</code> | <code>A fiú gördeszkás trükköt csinál.</code> | <code>A fiú korcsolyázik a járdán.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### train |
|
|
|
* Dataset: train |
|
* Size: 5,000 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 11.73 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.24 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.07 tokens</li><li>max: 53 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:---------------------------------------------------------------------------|:----------------------------------------------|:---------------------------------------------------------------| |
|
| <code>Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett.</code> | <code>Egy ember a szabadban, lóháton.</code> | <code>Egy ember egy étteremben van, és omlettet rendel.</code> | |
|
| <code>Gyerekek mosolyogva és integetett a kamera</code> | <code>Gyermekek vannak jelen</code> | <code>A gyerekek homlokot rántanak</code> | |
|
| <code>Egy fiú ugrál a gördeszkát a közepén egy piros híd.</code> | <code>A fiú gördeszkás trükköt csinál.</code> | <code>A fiú korcsolyázik a járdán.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.8 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.44.0 |
|
- PyTorch: 2.3.0.post101 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 3.0.2 |
|
- Tokenizers: 0.19.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |
|
|