Intended uses & limitations
How to use
You can use this model with spacy.
!pip install https://huggingface.co/karthid/ta_Tamil_NER/resolve/main/ta_Tamil_NER-any-py3-none-any.whl
import ta_Tamil_NER
from spacy import displacy
nlp = ta_Tamil_NER.load()
doc = nlp("கூகுள் நிறுவனம் தனது முக்கிய வசதியான ஸ்ட்ரீட் வியூ வசதியை 10 நகரங்களில் இந்தியாவில் அறிமுகப்படுத்தி உள்ளது.")
displacy.render(doc,jupyter=True, style = "ent")
Feature | Description |
---|---|
Name | ta_Tamil_NER |
Version | 0.0.0 |
spaCy | >=3.2.4,<3.3.0 |
Default Pipeline | transformer , ner |
Components | transformer , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | n/a |
License | n/a |
Author | Karthi Dhayalan |
Label Scheme
View label scheme
Component | Labels |
---|---|
ner |
B-PER , I-PER , B-ORG , I-ORG , B-LOC , I-LOC |
Accuracy
Type | Score |
---|---|
ENTS_F |
84.92 |
ENTS_P |
84.34 |
ENTS_R |
85.52 |
TRANSFORMER_LOSS |
1842600.06 |
NER_LOSS |
108788.05 |
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Evaluation results
- NER Precisionself-reported0.843
- NER Recallself-reported0.855
- NER F Scoreself-reported0.849