wtimit-base-960h-normal30percent-all

This model is a fine-tuned version of facebook/wav2vec2-base-960h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8097
  • Wer: 0.3692

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.32 1.3889 1000 0.3506 0.2804
0.2342 2.7778 2000 0.4413 0.2977
0.183 4.1667 3000 0.4847 0.3134
0.1389 5.5556 4000 0.5576 0.3291
0.1156 6.9444 5000 0.6021 0.3405
0.1003 8.3333 6000 0.6778 0.3632
0.0921 9.7222 7000 0.6309 0.3549
0.0771 11.1111 8000 0.7765 0.3823
0.0674 12.5 9000 0.7512 0.3722
0.0629 13.8889 10000 0.6964 0.3764
0.0575 15.2778 11000 0.8090 0.3812
0.0531 16.6667 12000 0.8377 0.3919
0.044 18.0556 13000 0.8246 0.3881
0.0427 19.4444 14000 0.8331 0.3826
0.0415 20.8333 15000 0.8166 0.3800
0.0356 22.2222 16000 0.8550 0.3916
0.0359 23.6111 17000 0.7968 0.3843
0.0311 25.0 18000 0.8020 0.3788
0.0251 26.3889 19000 0.8026 0.3684
0.0264 27.7778 20000 0.7937 0.3743
0.0248 29.1667 21000 0.8097 0.3692

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
19
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kartikay101/wtimit-base-960h-normal30percent-all

Finetuned
(122)
this model