File size: 2,752 Bytes
3635f01
affe03e
 
 
 
 
 
 
 
 
3635f01
 
affe03e
 
3635f01
affe03e
3635f01
affe03e
 
 
 
3635f01
affe03e
3635f01
affe03e
3635f01
affe03e
3635f01
affe03e
3635f01
affe03e
3635f01
affe03e
3635f01
affe03e
3635f01
affe03e
3635f01
affe03e
 
 
 
 
 
 
 
 
 
3635f01
affe03e
3635f01
affe03e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3635f01
 
affe03e
3635f01
affe03e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wtimit-base-960h-normal30percent-all
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wtimit-base-960h-normal30percent-all

This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8097
- Wer: 0.3692

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer    |
|:-------------:|:-------:|:-----:|:---------------:|:------:|
| 0.32          | 1.3889  | 1000  | 0.3506          | 0.2804 |
| 0.2342        | 2.7778  | 2000  | 0.4413          | 0.2977 |
| 0.183         | 4.1667  | 3000  | 0.4847          | 0.3134 |
| 0.1389        | 5.5556  | 4000  | 0.5576          | 0.3291 |
| 0.1156        | 6.9444  | 5000  | 0.6021          | 0.3405 |
| 0.1003        | 8.3333  | 6000  | 0.6778          | 0.3632 |
| 0.0921        | 9.7222  | 7000  | 0.6309          | 0.3549 |
| 0.0771        | 11.1111 | 8000  | 0.7765          | 0.3823 |
| 0.0674        | 12.5    | 9000  | 0.7512          | 0.3722 |
| 0.0629        | 13.8889 | 10000 | 0.6964          | 0.3764 |
| 0.0575        | 15.2778 | 11000 | 0.8090          | 0.3812 |
| 0.0531        | 16.6667 | 12000 | 0.8377          | 0.3919 |
| 0.044         | 18.0556 | 13000 | 0.8246          | 0.3881 |
| 0.0427        | 19.4444 | 14000 | 0.8331          | 0.3826 |
| 0.0415        | 20.8333 | 15000 | 0.8166          | 0.3800 |
| 0.0356        | 22.2222 | 16000 | 0.8550          | 0.3916 |
| 0.0359        | 23.6111 | 17000 | 0.7968          | 0.3843 |
| 0.0311        | 25.0    | 18000 | 0.8020          | 0.3788 |
| 0.0251        | 26.3889 | 19000 | 0.8026          | 0.3684 |
| 0.0264        | 27.7778 | 20000 | 0.7937          | 0.3743 |
| 0.0248        | 29.1667 | 21000 | 0.8097          | 0.3692 |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1