metadata
license: mit
base_model: FacebookAI/roberta-base
tags:
- generated_from_keras_callback
model-index:
- name: kasrahabib/roberta-base-finetuned-iso29148-promise-km-labels-all-cls
results: []
kasrahabib/roberta-base-finetuned-iso29148-promise-km-labels-all-cls
This model is a fine-tuned version of FacebookAI/roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0093
- Validation Loss: 0.1119
- Epoch: 29
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2370, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
2.2048 | 1.6598 | 0 |
1.1216 | 0.5631 | 1 |
0.3896 | 0.2574 | 2 |
0.1978 | 0.1997 | 3 |
0.1204 | 0.1526 | 4 |
0.0676 | 0.1887 | 5 |
0.0435 | 0.1289 | 6 |
0.0338 | 0.1219 | 7 |
0.0291 | 0.1140 | 8 |
0.0372 | 0.1829 | 9 |
0.0655 | 0.2036 | 10 |
0.0654 | 0.3368 | 11 |
0.1950 | 0.3786 | 12 |
0.0544 | 0.1708 | 13 |
0.0195 | 0.1446 | 14 |
0.0166 | 0.1364 | 15 |
0.0154 | 0.1302 | 16 |
0.0136 | 0.1272 | 17 |
0.0127 | 0.1251 | 18 |
0.0119 | 0.1248 | 19 |
0.0115 | 0.1231 | 20 |
0.0112 | 0.1214 | 21 |
0.0107 | 0.1190 | 22 |
0.0104 | 0.1166 | 23 |
0.0100 | 0.1157 | 24 |
0.0095 | 0.1131 | 25 |
0.0096 | 0.1126 | 26 |
0.0092 | 0.1120 | 27 |
0.0094 | 0.1119 | 28 |
0.0093 | 0.1119 | 29 |
Framework versions
- Transformers 4.42.3
- TensorFlow 2.15.0
- Datasets 2.19.1
- Tokenizers 0.19.1