LiLT-RE-DE-SIN / README.md
kavg's picture
LiLT-RE-DE-SIN
6e9b0c3 verified
metadata
license: mit
base_model: kavg/LiLT-RE-DE
tags:
  - generated_from_trainer
datasets:
  - xfun
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: checkpoints
    results: []

checkpoints

This model is a fine-tuned version of kavg/LiLT-RE-DE on the xfun dataset. It achieves the following results on the evaluation set:

  • Precision: 0.2952
  • Recall: 0.4167
  • F1: 0.3455
  • Loss: 0.3186

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 10000

Training results

Training Loss Epoch Step Precision Recall F1 Validation Loss
0.1035 41.67 500 0.2905 0.1540 0.2013 0.2291
0.0691 83.33 1000 0.2952 0.4167 0.3455 0.3186
0.0442 125.0 1500 0.2970 0.5909 0.3953 0.2765
0.024 166.67 2000 0.3227 0.5884 0.4168 0.4144
0.0216 208.33 2500 0.3234 0.6035 0.4211 0.4036
0.0096 250.0 3000 0.3534 0.6364 0.4545 0.5716
0.0079 291.67 3500 0.3456 0.5934 0.4368 0.6643
0.0045 333.33 4000 0.3427 0.6187 0.4410 0.6955
0.0017 375.0 4500 0.3587 0.6187 0.4541 0.8144
0.0147 416.67 5000 0.3407 0.6212 0.4401 0.8101
0.0027 458.33 5500 0.3491 0.6162 0.4457 0.8809
0.0079 500.0 6000 0.3183 0.6061 0.4174 0.8863
0.0028 541.67 6500 0.3506 0.5985 0.4422 0.9944
0.0075 583.33 7000 0.3476 0.5960 0.4391 0.9920
0.0002 625.0 7500 0.3448 0.6061 0.4396 0.9752
0.0025 666.67 8000 0.3456 0.6162 0.4428 0.9866
0.0037 708.33 8500 0.3465 0.6187 0.4442 1.0153
0.0041 750.0 9000 0.3442 0.6136 0.4410 1.1227
0.0023 791.67 9500 0.3450 0.6237 0.4442 1.0995
0.0007 833.33 10000 0.3408 0.6162 0.4388 1.1097

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1