checkpoints
This model is a fine-tuned version of kavg/LiLT-RE-JA on the xfun dataset. It achieves the following results on the evaluation set:
- Precision: 0.4744
- Recall: 0.6540
- F1: 0.5499
- Loss: 0.5293
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 10000
Training results
Training Loss | Epoch | Step | F1 | Validation Loss | Precision | Recall |
---|---|---|---|---|---|---|
0.0815 | 41.67 | 500 | 0.4149 | 0.1502 | 0.3521 | 0.5051 |
0.0408 | 83.33 | 1000 | 0.4931 | 0.1593 | 0.4244 | 0.5884 |
0.0435 | 125.0 | 1500 | 0.5041 | 0.2311 | 0.4218 | 0.6263 |
0.0168 | 166.67 | 2000 | 0.5097 | 0.3195 | 0.4286 | 0.6288 |
0.0073 | 208.33 | 2500 | 0.5088 | 0.3313 | 0.4308 | 0.6212 |
0.0051 | 250.0 | 3000 | 0.5264 | 0.3939 | 0.4349 | 0.6667 |
0.0038 | 291.67 | 3500 | 0.5252 | 0.3958 | 0.4435 | 0.6439 |
0.0016 | 333.33 | 4000 | 0.5335 | 0.4708 | 0.4606 | 0.6338 |
0.0082 | 375.0 | 4500 | 0.5340 | 0.4429 | 0.4562 | 0.6439 |
0.0079 | 416.67 | 5000 | 0.5305 | 0.4498 | 0.4601 | 0.6263 |
0.0028 | 458.33 | 5500 | 0.5352 | 0.4993 | 0.4578 | 0.6439 |
0.0003 | 500.0 | 6000 | 0.5422 | 0.5253 | 0.4695 | 0.6414 |
0.0014 | 541.67 | 6500 | 0.5437 | 0.5134 | 0.4705 | 0.6439 |
0.0043 | 583.33 | 7000 | 0.5393 | 0.5308 | 0.4652 | 0.6414 |
0.0002 | 625.0 | 7500 | 0.5378 | 0.5572 | 0.4604 | 0.6465 |
0.0014 | 666.67 | 8000 | 0.5386 | 0.5451 | 0.4591 | 0.6515 |
0.0027 | 708.33 | 8500 | 0.4629 | 0.6465 | 0.5395 | 0.5747 |
0.0036 | 750.0 | 9000 | 0.4744 | 0.6540 | 0.5499 | 0.5293 |
0.0021 | 791.67 | 9500 | 0.4610 | 0.6566 | 0.5417 | 0.5391 |
0.0002 | 833.33 | 10000 | 0.4625 | 0.6540 | 0.5418 | 0.5359 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.1
- Downloads last month
- 2