checkpoints
This model is a fine-tuned version of kavg/LiLT-RE-PT on the xfun dataset. It achieves the following results on the evaluation set:
- Precision: 0.3631
- Recall: 0.4823
- F1: 0.4143
- Loss: 0.1671
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Precision | Recall | F1 | Validation Loss |
---|---|---|---|---|---|---|
0.0907 | 41.67 | 500 | 0.3315 | 0.3106 | 0.3207 | 0.2039 |
0.0766 | 83.33 | 1000 | 0.3631 | 0.4823 | 0.4143 | 0.1671 |
0.0639 | 125.0 | 1500 | 0.3640 | 0.6086 | 0.4556 | 0.2525 |
0.0309 | 166.67 | 2000 | 0.3973 | 0.6010 | 0.4784 | 0.2339 |
0.0318 | 208.33 | 2500 | 0.4045 | 0.6414 | 0.4961 | 0.3325 |
0.0144 | 250.0 | 3000 | 0.4268 | 0.6187 | 0.5052 | 0.3513 |
0.0163 | 291.67 | 3500 | 0.4273 | 0.6086 | 0.5021 | 0.2880 |
0.0062 | 333.33 | 4000 | 0.4368 | 0.6288 | 0.5155 | 0.3064 |
0.0115 | 375.0 | 4500 | 0.4386 | 0.6313 | 0.5176 | 0.3283 |
0.0168 | 416.67 | 5000 | 0.4373 | 0.6162 | 0.5115 | 0.3258 |
0.0062 | 458.33 | 5500 | 0.4530 | 0.6086 | 0.5194 | 0.3467 |
0.0074 | 500.0 | 6000 | 0.4569 | 0.6162 | 0.5247 | 0.3401 |
0.0037 | 541.67 | 6500 | 0.4559 | 0.6136 | 0.5231 | 0.3526 |
0.008 | 583.33 | 7000 | 0.4650 | 0.6035 | 0.5253 | 0.3076 |
0.0045 | 625.0 | 7500 | 0.4610 | 0.6111 | 0.5255 | 0.3799 |
0.0045 | 666.67 | 8000 | 0.4551 | 0.6136 | 0.5226 | 0.3692 |
0.0052 | 708.33 | 8500 | 0.4535 | 0.6162 | 0.5225 | 0.3492 |
0.0002 | 750.0 | 9000 | 0.4537 | 0.6061 | 0.5189 | 0.4075 |
0.0027 | 791.67 | 9500 | 0.4581 | 0.6212 | 0.5273 | 0.3816 |
0.0009 | 833.33 | 10000 | 0.4569 | 0.6162 | 0.5247 | 0.3834 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.1
- Downloads last month
- 4