LiLT-SER-PT-SIN / README.md
kavg's picture
End of training
efd959e verified
metadata
license: mit
base_model: kavg/LiLT-SER-PT
tags:
  - generated_from_trainer
datasets:
  - xfun
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: LiLT-SER-PT-SIN
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: xfun
          type: xfun
          config: xfun.sin
          split: validation
          args: xfun.sin
        metrics:
          - name: Precision
            type: precision
            value: 0.7639225181598063
          - name: Recall
            type: recall
            value: 0.7770935960591133
          - name: F1
            type: f1
            value: 0.7704517704517705
          - name: Accuracy
            type: accuracy
            value: 0.8626735867583111

LiLT-SER-PT-SIN

This model is a fine-tuned version of kavg/LiLT-SER-PT on the xfun dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2074
  • Precision: 0.7639
  • Recall: 0.7771
  • F1: 0.7705
  • Accuracy: 0.8627

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
0.0124 21.74 500 0.8590 0.7403 0.8082 0.7381 0.7426
0.0017 43.48 1000 0.8301 0.7272 1.2608 0.75 0.7057
0.0004 65.22 1500 0.8694 0.7323 0.8843 0.7098 0.7562
0.0 86.96 2000 0.8617 0.7532 1.0638 0.7419 0.7648
0.0001 108.7 2500 0.8580 0.7674 1.1504 0.7689 0.7660
0.0006 130.43 3000 0.8677 0.7479 0.9865 0.7230 0.7746
0.0 152.17 3500 0.8617 0.7558 1.1492 0.7494 0.7623
0.0001 173.91 4000 0.8385 0.7590 1.3124 0.7485 0.7697
0.0055 195.65 4500 1.1331 0.7295 0.7869 0.7571 0.8479
0.0 217.39 5000 1.2061 0.7392 0.7611 0.7500 0.8500
0.0001 239.13 5500 1.2572 0.7253 0.7672 0.7457 0.8482
0.0 260.87 6000 1.3558 0.7494 0.7734 0.7612 0.8569
0.0 282.61 6500 1.4382 0.7598 0.7672 0.7635 0.8589
0.0 304.35 7000 1.4720 0.7537 0.7574 0.7555 0.8533
0.0 326.09 7500 1.3835 0.7524 0.7783 0.7651 0.8579
0.0 347.83 8000 1.2693 0.7534 0.7599 0.7566 0.8599
0.0 369.57 8500 1.2005 0.7417 0.7709 0.7560 0.8600
0.0 391.3 9000 1.2175 0.7560 0.7820 0.7688 0.8601
0.0 413.04 9500 1.2339 0.7556 0.7845 0.7698 0.8601
0.0 434.78 10000 1.2074 0.7639 0.7771 0.7705 0.8627

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1