kdrianm's picture
End of training
10b333c verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: emotion_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.475

emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5599
  • Accuracy: 0.475

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 5 2.0884 0.1125
2.08 2.0 10 2.0750 0.1437
2.08 3.0 15 2.0519 0.2125
2.0091 4.0 20 2.0177 0.225
2.0091 5.0 25 1.9777 0.2625
1.8779 6.0 30 1.9381 0.3125
1.8779 7.0 35 1.8990 0.3438
1.7355 8.0 40 1.8592 0.3688
1.7355 9.0 45 1.8217 0.3812
1.598 10.0 50 1.7844 0.4
1.598 11.0 55 1.7536 0.4062
1.4689 12.0 60 1.7217 0.4188
1.4689 13.0 65 1.7019 0.4188
1.3534 14.0 70 1.6773 0.4188
1.3534 15.0 75 1.6614 0.425
1.2526 16.0 80 1.6448 0.4562
1.2526 17.0 85 1.6306 0.45
1.1657 18.0 90 1.6201 0.4562
1.1657 19.0 95 1.6067 0.4562
1.0918 20.0 100 1.5992 0.45
1.0918 21.0 105 1.5889 0.4562
1.0311 22.0 110 1.5852 0.4562
1.0311 23.0 115 1.5767 0.4625
0.9814 24.0 120 1.5733 0.45
0.9814 25.0 125 1.5688 0.4625
0.9439 26.0 130 1.5643 0.4562
0.9439 27.0 135 1.5620 0.4625
0.918 28.0 140 1.5599 0.475
0.918 29.0 145 1.5586 0.4625
0.9044 30.0 150 1.5582 0.4562

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3