kdrianm's picture
End of training
07158c2 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-emotion_classifier
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.525

vit-emotion_classifier

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4782
  • Accuracy: 0.525

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0776 1.0 10 2.0731 0.1437
2.0526 2.0 20 2.0567 0.1688
1.9975 3.0 30 2.0160 0.2
1.8977 4.0 40 1.9550 0.3
1.778 5.0 50 1.8805 0.3625
1.6549 6.0 60 1.8073 0.375
1.5379 7.0 70 1.7428 0.4125
1.4241 8.0 80 1.6957 0.4062
1.3212 9.0 90 1.6550 0.45
1.2245 10.0 100 1.6271 0.4437
1.1336 11.0 110 1.5928 0.4562
1.0483 12.0 120 1.5695 0.4688
0.9669 13.0 130 1.5452 0.4875
0.8889 14.0 140 1.5248 0.4875
0.815 15.0 150 1.5063 0.5062
0.7466 16.0 160 1.4909 0.4938
0.6852 17.0 170 1.4782 0.525
0.6308 18.0 180 1.4615 0.5
0.5819 19.0 190 1.4541 0.5
0.5392 20.0 200 1.4458 0.5125
0.503 21.0 210 1.4393 0.5
0.4718 22.0 220 1.4289 0.5188
0.4458 23.0 230 1.4238 0.5188
0.4234 24.0 240 1.4211 0.5125
0.405 25.0 250 1.4182 0.5
0.3905 26.0 260 1.4157 0.5062
0.379 27.0 270 1.4125 0.5062
0.3706 28.0 280 1.4119 0.5062
0.3649 29.0 290 1.4115 0.5062
0.3618 30.0 300 1.4111 0.5062

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3