infoquality / README.md
kearney's picture
Update README.md
d020e5b
|
raw
history blame
2.78 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: infoquality
    results: []

infoquality

This model is a fine-tuned version of distilbert-base-uncased on a custom dataset curated by the model engineer. It achieves the following results on the evaluation set:

  • Loss: 0.0015
  • Accuracy: 0.9999

Model description

A binary classifier of text inputs (messages) designed to represent the quality of information with "High" and "Low" categories.

  • High represents meaningful natural language
  • Low represents cliché or otherwise meaningless natural language

Intended uses & limitations

Designed for natural language detection and/or weighting of natural language messages.

Training and evaluation data

Algorithmically curated from millions of publicly available social messages and, in some cases, programatically generated to reflect theoretical design principles.

Training procedure

# label maps
id2label = {0: "low", 1: "high"}
label2id = {"low": 0, "high": 1}

# auto model
model = AutoModelForSequenceClassification.from_pretrained(
    "distilbert-base-uncased",
    num_labels=2,
    id2label=id2label,
    label2id=label2id,
)

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 0.2

Training results

Epoch Step Val. Loss Accuracy
0.01 10 0.4780 0.96
0.02 20 0.1759 0.965
0.03 30 0.0477 0.995
0.04 40 0.1199 0.95
0.05 50 0.0413 0.99
0.06 60 0.0068 1.0
0.07 70 0.0056 1.0
0.08 80 0.0220 0.995
0.09 90 0.0081 1.0
0.1 100 0.0074 0.995
0.11 110 0.0035 1.0
0.12 120 0.0030 1.0
0.13 130 0.0022 1.0
0.14 140 0.0024 1.0
0.15 150 0.0021 1.0
0.16 160 0.0016 1.0
0.17 170 0.0016 1.0
0.18 180 0.0016 1.0
0.19 190 0.0015 1.0
0.2 200 0.0015 1.0

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1
  • Datasets 2.14.4
  • Tokenizers 0.13.3