bbc-to-ind-nmt-v6 / README.md
kepinsam's picture
End of training
d5ec38b verified
metadata
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
  - generated_from_trainer
datasets:
  - nusatranslation_mt
metrics:
  - sacrebleu
model-index:
  - name: bbc-to-ind-nmt-v6
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: nusatranslation_mt
          type: nusatranslation_mt
          config: nusatranslation_mt_btk_ind_source
          split: test
          args: nusatranslation_mt_btk_ind_source
        metrics:
          - name: Sacrebleu
            type: sacrebleu
            value: 38.2052

bbc-to-ind-nmt-v6

This model is a fine-tuned version of facebook/nllb-200-distilled-600M on the nusatranslation_mt dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1940
  • Sacrebleu: 38.2052
  • Gen Len: 37.467

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Sacrebleu Gen Len
4.1507 1.0 825 1.3826 31.3365 37.6035
1.2319 2.0 1650 1.1646 36.0321 37.553
0.9893 3.0 2475 1.1238 37.2804 37.284
0.8593 4.0 3300 1.1213 38.1118 37.409
0.7624 5.0 4125 1.1353 38.2863 37.234
0.6872 6.0 4950 1.1404 38.3932 37.1405
0.6253 7.0 5775 1.1566 38.1803 37.191
0.5781 8.0 6600 1.1723 38.3633 37.351
0.5441 9.0 7425 1.1836 38.25 37.485
0.5214 10.0 8250 1.1940 38.2052 37.467

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.19.1