|
--- |
|
library_name: keras-hub |
|
license: apache-2.0 |
|
language: |
|
- en |
|
tags: |
|
- text-classification |
|
pipeline_tag: text-classification |
|
--- |
|
## Model Overview |
|
BERT (Bidirectional Encoder Representations from Transformers) is a set of language models published by Google. They are intended for classification and embedding of text, not for text-generation. See the model card below for benchmarks, data sources, and intended use cases. |
|
|
|
Weights and Keras model code are released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE). |
|
|
|
## Links |
|
|
|
* [Bert Quickstart Notebook](https://www.kaggle.com/code/matthewdwatson/bert-quickstart) |
|
* [Bert API Documentation](https://keras.io/api/keras_hub/models/bert/) |
|
* [Bert Model Card](https://github.com/google-research/bert/blob/master/README.md) |
|
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/) |
|
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/) |
|
|
|
## Installation |
|
|
|
Keras and KerasHub can be installed with: |
|
|
|
``` |
|
pip install -U -q keras-hub |
|
pip install -U -q keras>=3 |
|
``` |
|
|
|
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page. |
|
|
|
## Presets |
|
|
|
The following model checkpoints are provided by the Keras team. Full code examples for each are available below. |
|
|
|
| Preset name | Parameters | Description | |
|
|------------------------|------------|-------------------------------------------------------------------------------------------------| |
|
| `bert_tiny_en_uncased` | 4.39M | 2-layer BERT model where all input is lowercased. | |
|
| `bert_small_en_uncased` | 28.76M | 4-layer BERT model where all input is lowercased. | |
|
| `bert_medium_en_uncased` | 41.37M | 8-layer BERT model where all input is lowercased. | |
|
| `bert_base_en_uncased` | 109.48M | 12-layer BERT model where all input is lowercased. | |
|
| `bert_base_en` | 108.31M | 12-layer BERT model where case is maintained. | |
|
| `bert_base_zh` | 102.27M | 12-layer BERT model. Trained on Chinese Wikipedia. | |
|
| `bert_base_multi` | 177.85M | 12-layer BERT model where case is maintained. | |
|
| `bert_large_en_uncased` | 335.14M | 24-layer BERT model where all input is lowercased. | |
|
| `bert_large_en` | 333.58M | 24-layer BERT model where case is maintained. | |
|
|
|
## Example Usage |
|
```python |
|
import keras |
|
import keras_hub |
|
import numpy as np |
|
``` |
|
|
|
Raw string data. |
|
```python |
|
features = ["The quick brown fox jumped.", "I forgot my homework."] |
|
labels = [0, 3] |
|
|
|
# Pretrained classifier. |
|
classifier = keras_hub.models.BertClassifier.from_preset( |
|
"bert_tiny_en_uncased", |
|
num_classes=4, |
|
) |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
classifier.predict(x=features, batch_size=2) |
|
|
|
# Re-compile (e.g., with a new learning rate). |
|
classifier.compile( |
|
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), |
|
optimizer=keras.optimizers.Adam(5e-5), |
|
jit_compile=True, |
|
) |
|
# Access backbone programmatically (e.g., to change `trainable`). |
|
classifier.backbone.trainable = False |
|
# Fit again. |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
``` |
|
|
|
Preprocessed integer data. |
|
```python |
|
features = { |
|
"token_ids": np.ones(shape=(2, 12), dtype="int32"), |
|
"segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]] * 2), |
|
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2), |
|
} |
|
labels = [0, 3] |
|
|
|
# Pretrained classifier without preprocessing. |
|
classifier = keras_hub.models.BertClassifier.from_preset( |
|
"bert_tiny_en_uncased", |
|
num_classes=4, |
|
preprocessor=None, |
|
) |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
``` |
|
|
|
## Example Usage with Hugging Face URI |
|
|
|
```python |
|
import keras |
|
import keras_hub |
|
import numpy as np |
|
``` |
|
|
|
Raw string data. |
|
```python |
|
features = ["The quick brown fox jumped.", "I forgot my homework."] |
|
labels = [0, 3] |
|
|
|
# Pretrained classifier. |
|
classifier = keras_hub.models.BertClassifier.from_preset( |
|
"hf://keras/bert_tiny_en_uncased", |
|
num_classes=4, |
|
) |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
classifier.predict(x=features, batch_size=2) |
|
|
|
# Re-compile (e.g., with a new learning rate). |
|
classifier.compile( |
|
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), |
|
optimizer=keras.optimizers.Adam(5e-5), |
|
jit_compile=True, |
|
) |
|
# Access backbone programmatically (e.g., to change `trainable`). |
|
classifier.backbone.trainable = False |
|
# Fit again. |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
``` |
|
|
|
Preprocessed integer data. |
|
```python |
|
features = { |
|
"token_ids": np.ones(shape=(2, 12), dtype="int32"), |
|
"segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]] * 2), |
|
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2), |
|
} |
|
labels = [0, 3] |
|
|
|
# Pretrained classifier without preprocessing. |
|
classifier = keras_hub.models.BertClassifier.from_preset( |
|
"hf://keras/bert_tiny_en_uncased", |
|
num_classes=4, |
|
preprocessor=None, |
|
) |
|
classifier.fit(x=features, y=labels, batch_size=2) |
|
``` |