Model Overview
An OPT decoder network.
This class implements a Transformer-based decoder model as described in
"OPT: Open Pre-trained Transformer Language Models".
The default constructor gives a fully customizable, randomly initialized OPT
model with any number of layers, heads, and embedding dimensions. To load
preset architectures and weights, use the from_preset()
constructor.
Disclaimer: Pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. The underlying model is provided by a third party and subject to a separate license, available here.
Arguments
- vocabulary_size: int. The size of the token vocabulary.
- num_layers: int. The number of transformer decoder layers.
- num_heads: int. The number of attention heads for each transformer. The hidden size must be divisible by the number of attention heads.
- hidden_dim: int. The hidden size of the transformer decoder layers.
- intermediate_dim: int. The output dimension of the first Dense layer in a two-layer feedforward network for each transformer decoder layer.
- dropout: float. Dropout probability for the Transformer decoder.
- max_sequence_length: int. The maximum sequence length that this decoder
can consume. If
None
,max_sequence_length
uses the value from sequence length. This determines the variable shape for positional embeddings.
Example Usage
import keras
import keras_hub
import numpy as np
Use generate()
to do text generation.
opt_lm = keras_hub.models.OPTCausalLM.from_preset("opt_6.7b_en")
opt_lm.generate("I want to say", max_length=30)
# Generate with batched prompts.
opt_lm.generate(["This is a", "Where are you"], max_length=30)
Compile the generate()
function with a custom sampler.
opt_lm = keras_hub.models.OPTCausalLM.from_preset("opt_6.7b_en")
opt_lm.compile(sampler="greedy")
opt_lm.generate("I want to say", max_length=30)
opt_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
opt_lm.generate("I want to say", max_length=30)
Use generate()
without preprocessing.
# Prompt the model with `5338, 318` (the token ids for `"Who is"`).
# Use `"padding_mask"` to indicate values that should not be overridden.
prompt = {
"token_ids": np.array([[5338, 318, 0, 0, 0]] * 2),
"padding_mask": np.array([[1, 1, 0, 0, 0]] * 2),
}
opt_lm = keras_hub.models.OPTCausalLM.from_preset(
"opt_6.7b_en",
preprocessor=None,
)
opt_lm.generate(prompt)
Call fit()
on a single batch.
features = ["The quick brown fox jumped.", "I forgot my homework."]
opt_lm = keras_hub.models.OPTCausalLM.from_preset("opt_6.7b_en")
opt_lm.fit(x=features, batch_size=2)
Call fit()
without preprocessing.
x = {
"token_ids": np.array([[1, 2, 3, 4, 5]] * 2),
"padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[2, 3, 4, 5, 0]] * 2)
sw = np.array([[1, 1, 1, 1, 1]] * 2)
opt_lm = keras_hub.models.OPTCausalLM.from_preset(
"opt_6.7b_en",
preprocessor=None,
)
opt_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
Example Usage with Hugging Face URI
import keras
import keras_hub
import numpy as np
Use generate()
to do text generation.
opt_lm = keras_hub.models.OPTCausalLM.from_preset("hf://keras/opt_6.7b_en")
opt_lm.generate("I want to say", max_length=30)
# Generate with batched prompts.
opt_lm.generate(["This is a", "Where are you"], max_length=30)
Compile the generate()
function with a custom sampler.
opt_lm = keras_hub.models.OPTCausalLM.from_preset("hf://keras/opt_6.7b_en")
opt_lm.compile(sampler="greedy")
opt_lm.generate("I want to say", max_length=30)
opt_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
opt_lm.generate("I want to say", max_length=30)
Use generate()
without preprocessing.
# Prompt the model with `5338, 318` (the token ids for `"Who is"`).
# Use `"padding_mask"` to indicate values that should not be overridden.
prompt = {
"token_ids": np.array([[5338, 318, 0, 0, 0]] * 2),
"padding_mask": np.array([[1, 1, 0, 0, 0]] * 2),
}
opt_lm = keras_hub.models.OPTCausalLM.from_preset(
"hf://keras/opt_6.7b_en",
preprocessor=None,
)
opt_lm.generate(prompt)
Call fit()
on a single batch.
features = ["The quick brown fox jumped.", "I forgot my homework."]
opt_lm = keras_hub.models.OPTCausalLM.from_preset("hf://keras/opt_6.7b_en")
opt_lm.fit(x=features, batch_size=2)
Call fit()
without preprocessing.
x = {
"token_ids": np.array([[1, 2, 3, 4, 5]] * 2),
"padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[2, 3, 4, 5, 0]] * 2)
sw = np.array([[1, 1, 1, 1, 1]] * 2)
opt_lm = keras_hub.models.OPTCausalLM.from_preset(
"hf://keras/opt_6.7b_en",
preprocessor=None,
)
opt_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
- Downloads last month
- 20