Model Overview
A RoBERTa encoder network.
This network implements a bi-directional Transformer-based encoder as described in "RoBERTa: A Robustly Optimized BERT Pretraining Approach". It includes the embedding lookups and transformer layers, but does not include the masked language model head used during pretraining.
The default constructor gives a fully customizable, randomly initialized
RoBERTa encoder with any number of layers, heads, and embedding
dimensions. To load preset architectures and weights, use the from_preset()
constructor.
Disclaimer: Pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. The underlying model is provided by a third party and subject to a separate license, available here.
Links
- RoBERTa Quickstart Notebook
- RoBERTa API Documentation
- KerasHub Beginner Guide
- KerasHub Model Publishing Guide
Installation
Keras and KerasHub can be installed with:
pip install -U -q keras-Hub
pip install -U -q keras
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the Keras Getting Started page.
Presets
The following model checkpoints are provided by the Keras team. Full code examples for each are available below.
Preset name | Parameters | Description |
---|---|---|
roberta_base_en | 124.05M | 12-layer RoBERTa model where case is maintained.Trained on English Wikipedia, BooksCorpus, CommonCraw, and OpenWebText. |
roberta_large_en | 354.31M | 24-layer RoBERTa model where case is maintained.Trained on English Wikipedia, BooksCorpus, CommonCraw, and OpenWebText. |
Arguments
- vocabulary_size: int. The size of the token vocabulary.
- num_layers: int. The number of transformer layers.
- num_heads: int. The number of attention heads for each transformer. The hidden size must be divisible by the number of attention heads.
- hidden_dim: int. The size of the transformer encoding layer.
- intermediate_dim: int. The output dimension of the first Dense layer in a two-layer feedforward network for each transformer.
- dropout: float. Dropout probability for the Transformer encoder.
- max_sequence_length: int. The maximum sequence length this encoder can
consume. The sequence length of the input must be less than
max_sequence_length
default value. This determines the variable shape for positional embeddings.
Example Usage
import keras
import keras_hub
import numpy as np
Raw string data.
features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]
# Pretrained classifier.
classifier = keras_hub.models.RobertaClassifier.from_preset(
"roberta_large_en",
num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
classifier.predict(x=features, batch_size=2)
# Re-compile (e.g., with a new learning rate).
classifier.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
classifier.backbone.trainable = False
# Fit again.
classifier.fit(x=features, y=labels, batch_size=2)
Preprocessed integer data.
features = {
"token_ids": np.ones(shape=(2, 12), dtype="int32"),
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2),
}
labels = [0, 3]
# Pretrained classifier without preprocessing.
classifier = keras_hub.models.RobertaClassifier.from_preset(
"roberta_large_en",
num_classes=4,
preprocessor=None,
)
classifier.fit(x=features, y=labels, batch_size=2)
Example Usage with Hugging Face URI
import keras
import keras_hub
import numpy as np
Raw string data.
features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]
# Pretrained classifier.
classifier = keras_hub.models.RobertaClassifier.from_preset(
"hf://keras/roberta_large_en",
num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
classifier.predict(x=features, batch_size=2)
# Re-compile (e.g., with a new learning rate).
classifier.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
classifier.backbone.trainable = False
# Fit again.
classifier.fit(x=features, y=labels, batch_size=2)
Preprocessed integer data.
features = {
"token_ids": np.ones(shape=(2, 12), dtype="int32"),
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2),
}
labels = [0, 3]
# Pretrained classifier without preprocessing.
classifier = keras_hub.models.RobertaClassifier.from_preset(
"hf://keras/roberta_large_en",
num_classes=4,
preprocessor=None,
)
classifier.fit(x=features, y=labels, batch_size=2)
- Downloads last month
- 7