ViT
Collection
11 items
•
Updated
Vision Transformer (ViT) adapts the Transformer architecture, originally designed for natural language processing, to the domain of computer vision. It treats images as sequences of patches, similar to how Transformers treat sentences as sequences of words.. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
Keras and KerasHub can be installed with:
pip install -U -q keras-hub
pip install -U -q keras
Model ID | img_size | Acc | Top-5 | Parameters |
---|---|---|---|---|
Base | ||||
vit_base_patch16_224_imagenet | 224 | - | - | 85798656 |
vit_base_patch_16_224_imagenet21k | 224 | - | - | 85798656 |
vit_base_patch_16_384_imagenet | 384 | - | - | 86090496 |
vit_base_patch32_224_imagenet21k | 224 | - | - | 87455232 |
vit_base_patch32_384_imagenet | 384 | - | - | 87528192 |
Large | ||||
vit_large_patch16_224_imagenet | 224 | - | - | 303301632 |
vit_large_patch16_224_imagenet21k | 224 | - | - | 303301632 |
vit_large_patch16_384_imagenet | 224 | - | - | 303690752 |
vit_large_patch32_224_imagenet21k | 224 | - | - | 305510400 |
vit_large_patch32_384_imagenet | 224 | - | - | 305607680 |
Huge | ||||
vit_huge_patch14_224_imagenet21k | 224 | - | - | 630764800 |
image_classifier = keras_hub.models.ImageClassification.from_preset(
"vit_huge_patch14_224_imagenet21k"
)
input_data = np.random.uniform(0, 1, size=(2, 224, 224, 3))
image_classifier(input_data)
backbone = keras_hub.models.Backbone.from_preset(
"vit_huge_patch14_224_imagenet21k"
)
preprocessor = keras_hub.models.ViTImageClassifierPreprocessor.from_preset(
"vit_huge_patch14_224_imagenet21k"
)
model = keras_hub.models.ViTImageClassifier(
backbone=backbone,
num_classes=len(CLASSES),
preprocessor=preprocessor,
)
image_classifier = keras_hub.models.ImageClassification.from_preset(
"hf://keras/vit_huge_patch14_224_imagenet21k"
)
input_data = np.random.uniform(0, 1, size=(2, 224, 224, 3))
image_classifier(input_data)
backbone = keras_hub.models.Backbone.from_preset(
"hf://keras/vit_huge_patch14_224_imagenet21k"
)
preprocessor = keras_hub.models.ViTImageClassifierPreprocessor.from_preset(
"hf://keras/vit_huge_patch14_224_imagenet21k"
)
model = keras_hub.models.ViTImageClassifier(
backbone=backbone,
num_classes=len(CLASSES),
preprocessor=preprocessor,
)