Build (aarch64)
Browse files- build/torch26-cxx11-cu126-aarch64-linux/quantization/__init__.py +9 -0
- build/torch26-cxx11-cu126-aarch64-linux/quantization/_ops.py +3 -3
- build/torch26-cxx11-cu126-aarch64-linux/quantization/{_quantization_9035540.abi3.so → _quantization_82ffd1f.abi3.so} +2 -2
- build/torch26-cxx11-cu126-aarch64-linux/quantization/compressed_tensors.py +3 -1
- build/torch26-cxx11-cu126-aarch64-linux/quantization/platforms.py +35 -0
- build/torch26-cxx98-cu126-aarch64-linux/quantization/__init__.py +9 -0
- build/torch26-cxx98-cu126-aarch64-linux/quantization/_ops.py +3 -3
- build/torch26-cxx98-cu126-aarch64-linux/quantization/{_quantization_9035540.abi3.so → _quantization_82ffd1f.abi3.so} +1 -1
- build/torch26-cxx98-cu126-aarch64-linux/quantization/compressed_tensors.py +3 -1
- build/torch26-cxx98-cu126-aarch64-linux/quantization/platforms.py +35 -0
- build/torch27-cxx11-cu126-aarch64-linux/quantization/__init__.py +9 -0
- build/torch27-cxx11-cu126-aarch64-linux/quantization/_ops.py +3 -3
- build/torch27-cxx11-cu126-aarch64-linux/quantization/{_quantization_9035540.abi3.so → _quantization_82ffd1f.abi3.so} +2 -2
- build/torch27-cxx11-cu126-aarch64-linux/quantization/compressed_tensors.py +3 -1
- build/torch27-cxx11-cu126-aarch64-linux/quantization/platforms.py +35 -0
- build/torch27-cxx11-cu128-aarch64-linux/quantization/__init__.py +9 -0
- build/torch27-cxx11-cu128-aarch64-linux/quantization/_ops.py +3 -3
- build/torch27-cxx11-cu128-aarch64-linux/quantization/{_quantization_9035540.abi3.so → _quantization_82ffd1f.abi3.so} +2 -2
- build/torch27-cxx11-cu128-aarch64-linux/quantization/compressed_tensors.py +3 -1
- build/torch27-cxx11-cu128-aarch64-linux/quantization/platforms.py +35 -0
build/torch26-cxx11-cu126-aarch64-linux/quantization/__init__.py
CHANGED
@@ -19,6 +19,11 @@ from .scalar_type import (
|
|
19 |
)
|
20 |
from ._ops import ops
|
21 |
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
__all__ = [
|
24 |
"ScalarType",
|
@@ -32,7 +37,11 @@ __all__ = [
|
|
32 |
"gptq_marlin_repack",
|
33 |
"marlin_gemm",
|
34 |
"marlin_qqq_gemm",
|
|
|
|
|
|
|
35 |
"ops",
|
|
|
36 |
"scalar_types",
|
37 |
"scaled_fp8_quant",
|
38 |
"scaled_int8_quant",
|
|
|
19 |
)
|
20 |
from ._ops import ops
|
21 |
|
22 |
+
from .utils import marlin_utils
|
23 |
+
from .utils import marlin_utils_fp4
|
24 |
+
from .utils import marlin_utils_fp8
|
25 |
+
from .utils import quant_utils
|
26 |
+
|
27 |
|
28 |
__all__ = [
|
29 |
"ScalarType",
|
|
|
37 |
"gptq_marlin_repack",
|
38 |
"marlin_gemm",
|
39 |
"marlin_qqq_gemm",
|
40 |
+
"marlin_utils",
|
41 |
+
"marlin_utils_fp4",
|
42 |
+
"marlin_utils_fp8",
|
43 |
"ops",
|
44 |
+
"quant_utils",
|
45 |
"scalar_types",
|
46 |
"scaled_fp8_quant",
|
47 |
"scaled_int8_quant",
|
build/torch26-cxx11-cu126-aarch64-linux/quantization/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _quantization_82ffd1f
|
3 |
+
ops = torch.ops._quantization_82ffd1f
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_quantization_82ffd1f::{op_name}"
|
build/torch26-cxx11-cu126-aarch64-linux/quantization/{_quantization_9035540.abi3.so → _quantization_82ffd1f.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:163383785e3ca9a472f18c802591218f18ef3c9cde4bb83fa623575a8adfd085
|
3 |
+
size 159999656
|
build/torch26-cxx11-cu126-aarch64-linux/quantization/compressed_tensors.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
-
from typing import Optional,
|
2 |
|
3 |
import torch
|
4 |
|
5 |
from ._ops import ops
|
|
|
|
|
6 |
|
7 |
# fp8
|
8 |
def scaled_fp8_quant(
|
|
|
1 |
+
from typing import Optional, Union
|
2 |
|
3 |
import torch
|
4 |
|
5 |
from ._ops import ops
|
6 |
+
from .platforms import current_platform
|
7 |
+
|
8 |
|
9 |
# fp8
|
10 |
def scaled_fp8_quant(
|
build/torch26-cxx11-cu126-aarch64-linux/quantization/platforms.py
CHANGED
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
|
|
27 |
class Platform(ABC):
|
28 |
simple_compile_backend: str = "inductor"
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
@classmethod
|
31 |
@abstractmethod
|
32 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
|
|
51 |
|
52 |
|
53 |
class RocmPlatform(Platform):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
@classmethod
|
55 |
@lru_cache(maxsize=8)
|
56 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|
|
|
27 |
class Platform(ABC):
|
28 |
simple_compile_backend: str = "inductor"
|
29 |
|
30 |
+
@classmethod
|
31 |
+
def fp8_dtype(cls) -> torch.dtype:
|
32 |
+
"""
|
33 |
+
Returns the preferred FP8 type on the current platform.
|
34 |
+
|
35 |
+
See the documentation for is_fp8_fnuz for details.
|
36 |
+
"""
|
37 |
+
return torch.float8_e4m3fn
|
38 |
+
|
39 |
+
@classmethod
|
40 |
+
def is_fp8_fnuz(cls) -> bool:
|
41 |
+
"""
|
42 |
+
Returns whether the preferred FP8 type is FNUZ on the current platform.
|
43 |
+
|
44 |
+
There are two representations of FP8, OCP FP8 and FNUZ FP8.
|
45 |
+
The OCP specification can be found at https://tinyurl.com/b7jvwpft.
|
46 |
+
The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
|
47 |
+
|
48 |
+
AMD's MI300 and MI325 have native hardware support for FNUZ. All other
|
49 |
+
hardware has converged on the OCP FP8 standard.
|
50 |
+
"""
|
51 |
+
return False
|
52 |
+
|
53 |
@classmethod
|
54 |
@abstractmethod
|
55 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
|
|
74 |
|
75 |
|
76 |
class RocmPlatform(Platform):
|
77 |
+
@classmethod
|
78 |
+
def fp8_dtype(cls) -> torch.dtype:
|
79 |
+
if cls.is_fp8_fnuz():
|
80 |
+
return torch.float8_e4m3fnuz
|
81 |
+
else:
|
82 |
+
return torch.float8_e4m3fn
|
83 |
+
|
84 |
+
@classmethod
|
85 |
+
def is_fp8_fnuz(cls) -> bool:
|
86 |
+
# only device 0 is checked, this assumes MI300 platforms are homogeneous
|
87 |
+
return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
|
88 |
+
|
89 |
@classmethod
|
90 |
@lru_cache(maxsize=8)
|
91 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|
build/torch26-cxx98-cu126-aarch64-linux/quantization/__init__.py
CHANGED
@@ -19,6 +19,11 @@ from .scalar_type import (
|
|
19 |
)
|
20 |
from ._ops import ops
|
21 |
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
__all__ = [
|
24 |
"ScalarType",
|
@@ -32,7 +37,11 @@ __all__ = [
|
|
32 |
"gptq_marlin_repack",
|
33 |
"marlin_gemm",
|
34 |
"marlin_qqq_gemm",
|
|
|
|
|
|
|
35 |
"ops",
|
|
|
36 |
"scalar_types",
|
37 |
"scaled_fp8_quant",
|
38 |
"scaled_int8_quant",
|
|
|
19 |
)
|
20 |
from ._ops import ops
|
21 |
|
22 |
+
from .utils import marlin_utils
|
23 |
+
from .utils import marlin_utils_fp4
|
24 |
+
from .utils import marlin_utils_fp8
|
25 |
+
from .utils import quant_utils
|
26 |
+
|
27 |
|
28 |
__all__ = [
|
29 |
"ScalarType",
|
|
|
37 |
"gptq_marlin_repack",
|
38 |
"marlin_gemm",
|
39 |
"marlin_qqq_gemm",
|
40 |
+
"marlin_utils",
|
41 |
+
"marlin_utils_fp4",
|
42 |
+
"marlin_utils_fp8",
|
43 |
"ops",
|
44 |
+
"quant_utils",
|
45 |
"scalar_types",
|
46 |
"scaled_fp8_quant",
|
47 |
"scaled_int8_quant",
|
build/torch26-cxx98-cu126-aarch64-linux/quantization/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _quantization_82ffd1f
|
3 |
+
ops = torch.ops._quantization_82ffd1f
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_quantization_82ffd1f::{op_name}"
|
build/torch26-cxx98-cu126-aarch64-linux/quantization/{_quantization_9035540.abi3.so → _quantization_82ffd1f.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 159991696
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2bf0942eeeb2b821331211fc74ce7c37fccad95fc1ac6aa8bbc322a6f8ac249
|
3 |
size 159991696
|
build/torch26-cxx98-cu126-aarch64-linux/quantization/compressed_tensors.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
-
from typing import Optional,
|
2 |
|
3 |
import torch
|
4 |
|
5 |
from ._ops import ops
|
|
|
|
|
6 |
|
7 |
# fp8
|
8 |
def scaled_fp8_quant(
|
|
|
1 |
+
from typing import Optional, Union
|
2 |
|
3 |
import torch
|
4 |
|
5 |
from ._ops import ops
|
6 |
+
from .platforms import current_platform
|
7 |
+
|
8 |
|
9 |
# fp8
|
10 |
def scaled_fp8_quant(
|
build/torch26-cxx98-cu126-aarch64-linux/quantization/platforms.py
CHANGED
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
|
|
27 |
class Platform(ABC):
|
28 |
simple_compile_backend: str = "inductor"
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
@classmethod
|
31 |
@abstractmethod
|
32 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
|
|
51 |
|
52 |
|
53 |
class RocmPlatform(Platform):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
@classmethod
|
55 |
@lru_cache(maxsize=8)
|
56 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|
|
|
27 |
class Platform(ABC):
|
28 |
simple_compile_backend: str = "inductor"
|
29 |
|
30 |
+
@classmethod
|
31 |
+
def fp8_dtype(cls) -> torch.dtype:
|
32 |
+
"""
|
33 |
+
Returns the preferred FP8 type on the current platform.
|
34 |
+
|
35 |
+
See the documentation for is_fp8_fnuz for details.
|
36 |
+
"""
|
37 |
+
return torch.float8_e4m3fn
|
38 |
+
|
39 |
+
@classmethod
|
40 |
+
def is_fp8_fnuz(cls) -> bool:
|
41 |
+
"""
|
42 |
+
Returns whether the preferred FP8 type is FNUZ on the current platform.
|
43 |
+
|
44 |
+
There are two representations of FP8, OCP FP8 and FNUZ FP8.
|
45 |
+
The OCP specification can be found at https://tinyurl.com/b7jvwpft.
|
46 |
+
The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
|
47 |
+
|
48 |
+
AMD's MI300 and MI325 have native hardware support for FNUZ. All other
|
49 |
+
hardware has converged on the OCP FP8 standard.
|
50 |
+
"""
|
51 |
+
return False
|
52 |
+
|
53 |
@classmethod
|
54 |
@abstractmethod
|
55 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
|
|
74 |
|
75 |
|
76 |
class RocmPlatform(Platform):
|
77 |
+
@classmethod
|
78 |
+
def fp8_dtype(cls) -> torch.dtype:
|
79 |
+
if cls.is_fp8_fnuz():
|
80 |
+
return torch.float8_e4m3fnuz
|
81 |
+
else:
|
82 |
+
return torch.float8_e4m3fn
|
83 |
+
|
84 |
+
@classmethod
|
85 |
+
def is_fp8_fnuz(cls) -> bool:
|
86 |
+
# only device 0 is checked, this assumes MI300 platforms are homogeneous
|
87 |
+
return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
|
88 |
+
|
89 |
@classmethod
|
90 |
@lru_cache(maxsize=8)
|
91 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|
build/torch27-cxx11-cu126-aarch64-linux/quantization/__init__.py
CHANGED
@@ -19,6 +19,11 @@ from .scalar_type import (
|
|
19 |
)
|
20 |
from ._ops import ops
|
21 |
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
__all__ = [
|
24 |
"ScalarType",
|
@@ -32,7 +37,11 @@ __all__ = [
|
|
32 |
"gptq_marlin_repack",
|
33 |
"marlin_gemm",
|
34 |
"marlin_qqq_gemm",
|
|
|
|
|
|
|
35 |
"ops",
|
|
|
36 |
"scalar_types",
|
37 |
"scaled_fp8_quant",
|
38 |
"scaled_int8_quant",
|
|
|
19 |
)
|
20 |
from ._ops import ops
|
21 |
|
22 |
+
from .utils import marlin_utils
|
23 |
+
from .utils import marlin_utils_fp4
|
24 |
+
from .utils import marlin_utils_fp8
|
25 |
+
from .utils import quant_utils
|
26 |
+
|
27 |
|
28 |
__all__ = [
|
29 |
"ScalarType",
|
|
|
37 |
"gptq_marlin_repack",
|
38 |
"marlin_gemm",
|
39 |
"marlin_qqq_gemm",
|
40 |
+
"marlin_utils",
|
41 |
+
"marlin_utils_fp4",
|
42 |
+
"marlin_utils_fp8",
|
43 |
"ops",
|
44 |
+
"quant_utils",
|
45 |
"scalar_types",
|
46 |
"scaled_fp8_quant",
|
47 |
"scaled_int8_quant",
|
build/torch27-cxx11-cu126-aarch64-linux/quantization/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _quantization_82ffd1f
|
3 |
+
ops = torch.ops._quantization_82ffd1f
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_quantization_82ffd1f::{op_name}"
|
build/torch27-cxx11-cu126-aarch64-linux/quantization/{_quantization_9035540.abi3.so → _quantization_82ffd1f.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef0e68ff25982049ce0b6af570f6546c8f62a49e373397d352f89376c1805de4
|
3 |
+
size 159934080
|
build/torch27-cxx11-cu126-aarch64-linux/quantization/compressed_tensors.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
-
from typing import Optional,
|
2 |
|
3 |
import torch
|
4 |
|
5 |
from ._ops import ops
|
|
|
|
|
6 |
|
7 |
# fp8
|
8 |
def scaled_fp8_quant(
|
|
|
1 |
+
from typing import Optional, Union
|
2 |
|
3 |
import torch
|
4 |
|
5 |
from ._ops import ops
|
6 |
+
from .platforms import current_platform
|
7 |
+
|
8 |
|
9 |
# fp8
|
10 |
def scaled_fp8_quant(
|
build/torch27-cxx11-cu126-aarch64-linux/quantization/platforms.py
CHANGED
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
|
|
27 |
class Platform(ABC):
|
28 |
simple_compile_backend: str = "inductor"
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
@classmethod
|
31 |
@abstractmethod
|
32 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
|
|
51 |
|
52 |
|
53 |
class RocmPlatform(Platform):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
@classmethod
|
55 |
@lru_cache(maxsize=8)
|
56 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|
|
|
27 |
class Platform(ABC):
|
28 |
simple_compile_backend: str = "inductor"
|
29 |
|
30 |
+
@classmethod
|
31 |
+
def fp8_dtype(cls) -> torch.dtype:
|
32 |
+
"""
|
33 |
+
Returns the preferred FP8 type on the current platform.
|
34 |
+
|
35 |
+
See the documentation for is_fp8_fnuz for details.
|
36 |
+
"""
|
37 |
+
return torch.float8_e4m3fn
|
38 |
+
|
39 |
+
@classmethod
|
40 |
+
def is_fp8_fnuz(cls) -> bool:
|
41 |
+
"""
|
42 |
+
Returns whether the preferred FP8 type is FNUZ on the current platform.
|
43 |
+
|
44 |
+
There are two representations of FP8, OCP FP8 and FNUZ FP8.
|
45 |
+
The OCP specification can be found at https://tinyurl.com/b7jvwpft.
|
46 |
+
The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
|
47 |
+
|
48 |
+
AMD's MI300 and MI325 have native hardware support for FNUZ. All other
|
49 |
+
hardware has converged on the OCP FP8 standard.
|
50 |
+
"""
|
51 |
+
return False
|
52 |
+
|
53 |
@classmethod
|
54 |
@abstractmethod
|
55 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
|
|
74 |
|
75 |
|
76 |
class RocmPlatform(Platform):
|
77 |
+
@classmethod
|
78 |
+
def fp8_dtype(cls) -> torch.dtype:
|
79 |
+
if cls.is_fp8_fnuz():
|
80 |
+
return torch.float8_e4m3fnuz
|
81 |
+
else:
|
82 |
+
return torch.float8_e4m3fn
|
83 |
+
|
84 |
+
@classmethod
|
85 |
+
def is_fp8_fnuz(cls) -> bool:
|
86 |
+
# only device 0 is checked, this assumes MI300 platforms are homogeneous
|
87 |
+
return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
|
88 |
+
|
89 |
@classmethod
|
90 |
@lru_cache(maxsize=8)
|
91 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|
build/torch27-cxx11-cu128-aarch64-linux/quantization/__init__.py
CHANGED
@@ -19,6 +19,11 @@ from .scalar_type import (
|
|
19 |
)
|
20 |
from ._ops import ops
|
21 |
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
__all__ = [
|
24 |
"ScalarType",
|
@@ -32,7 +37,11 @@ __all__ = [
|
|
32 |
"gptq_marlin_repack",
|
33 |
"marlin_gemm",
|
34 |
"marlin_qqq_gemm",
|
|
|
|
|
|
|
35 |
"ops",
|
|
|
36 |
"scalar_types",
|
37 |
"scaled_fp8_quant",
|
38 |
"scaled_int8_quant",
|
|
|
19 |
)
|
20 |
from ._ops import ops
|
21 |
|
22 |
+
from .utils import marlin_utils
|
23 |
+
from .utils import marlin_utils_fp4
|
24 |
+
from .utils import marlin_utils_fp8
|
25 |
+
from .utils import quant_utils
|
26 |
+
|
27 |
|
28 |
__all__ = [
|
29 |
"ScalarType",
|
|
|
37 |
"gptq_marlin_repack",
|
38 |
"marlin_gemm",
|
39 |
"marlin_qqq_gemm",
|
40 |
+
"marlin_utils",
|
41 |
+
"marlin_utils_fp4",
|
42 |
+
"marlin_utils_fp8",
|
43 |
"ops",
|
44 |
+
"quant_utils",
|
45 |
"scalar_types",
|
46 |
"scaled_fp8_quant",
|
47 |
"scaled_int8_quant",
|
build/torch27-cxx11-cu128-aarch64-linux/quantization/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _quantization_82ffd1f
|
3 |
+
ops = torch.ops._quantization_82ffd1f
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_quantization_82ffd1f::{op_name}"
|
build/torch27-cxx11-cu128-aarch64-linux/quantization/{_quantization_9035540.abi3.so → _quantization_82ffd1f.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c8d85c6222df8ff6de82adbad94502fdc5c1910dbaa367034c8975c4f85244a
|
3 |
+
size 296561256
|
build/torch27-cxx11-cu128-aarch64-linux/quantization/compressed_tensors.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
-
from typing import Optional,
|
2 |
|
3 |
import torch
|
4 |
|
5 |
from ._ops import ops
|
|
|
|
|
6 |
|
7 |
# fp8
|
8 |
def scaled_fp8_quant(
|
|
|
1 |
+
from typing import Optional, Union
|
2 |
|
3 |
import torch
|
4 |
|
5 |
from ._ops import ops
|
6 |
+
from .platforms import current_platform
|
7 |
+
|
8 |
|
9 |
# fp8
|
10 |
def scaled_fp8_quant(
|
build/torch27-cxx11-cu128-aarch64-linux/quantization/platforms.py
CHANGED
@@ -27,6 +27,29 @@ class DeviceCapability(NamedTuple):
|
|
27 |
class Platform(ABC):
|
28 |
simple_compile_backend: str = "inductor"
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
@classmethod
|
31 |
@abstractmethod
|
32 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
@@ -51,6 +74,18 @@ class CudaPlatform(Platform):
|
|
51 |
|
52 |
|
53 |
class RocmPlatform(Platform):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
@classmethod
|
55 |
@lru_cache(maxsize=8)
|
56 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|
|
|
27 |
class Platform(ABC):
|
28 |
simple_compile_backend: str = "inductor"
|
29 |
|
30 |
+
@classmethod
|
31 |
+
def fp8_dtype(cls) -> torch.dtype:
|
32 |
+
"""
|
33 |
+
Returns the preferred FP8 type on the current platform.
|
34 |
+
|
35 |
+
See the documentation for is_fp8_fnuz for details.
|
36 |
+
"""
|
37 |
+
return torch.float8_e4m3fn
|
38 |
+
|
39 |
+
@classmethod
|
40 |
+
def is_fp8_fnuz(cls) -> bool:
|
41 |
+
"""
|
42 |
+
Returns whether the preferred FP8 type is FNUZ on the current platform.
|
43 |
+
|
44 |
+
There are two representations of FP8, OCP FP8 and FNUZ FP8.
|
45 |
+
The OCP specification can be found at https://tinyurl.com/b7jvwpft.
|
46 |
+
The FNUZ specification can be found at https://tinyurl.com/5n6hwwu5.
|
47 |
+
|
48 |
+
AMD's MI300 and MI325 have native hardware support for FNUZ. All other
|
49 |
+
hardware has converged on the OCP FP8 standard.
|
50 |
+
"""
|
51 |
+
return False
|
52 |
+
|
53 |
@classmethod
|
54 |
@abstractmethod
|
55 |
def get_device_name(cls, device_id: int = 0) -> str: ...
|
|
|
74 |
|
75 |
|
76 |
class RocmPlatform(Platform):
|
77 |
+
@classmethod
|
78 |
+
def fp8_dtype(cls) -> torch.dtype:
|
79 |
+
if cls.is_fp8_fnuz():
|
80 |
+
return torch.float8_e4m3fnuz
|
81 |
+
else:
|
82 |
+
return torch.float8_e4m3fn
|
83 |
+
|
84 |
+
@classmethod
|
85 |
+
def is_fp8_fnuz(cls) -> bool:
|
86 |
+
# only device 0 is checked, this assumes MI300 platforms are homogeneous
|
87 |
+
return "gfx94" in torch.cuda.get_device_properties(0).gcnArchName
|
88 |
+
|
89 |
@classmethod
|
90 |
@lru_cache(maxsize=8)
|
91 |
def get_device_capability(cls, device_id: int = 0) -> DeviceCapability:
|