bertbaseuncasedny

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.3901
  • Train End Logits Accuracy: 0.8823
  • Train Start Logits Accuracy: 0.8513
  • Validation Loss: 1.2123
  • Validation End Logits Accuracy: 0.7291
  • Validation Start Logits Accuracy: 0.6977
  • Epoch: 3

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 29508, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train End Logits Accuracy Train Start Logits Accuracy Validation Loss Validation End Logits Accuracy Validation Start Logits Accuracy Epoch
1.2597 0.6683 0.6277 1.0151 0.7214 0.6860 0
0.7699 0.7820 0.7427 1.0062 0.7342 0.6996 1
0.5343 0.8425 0.8064 1.1162 0.7321 0.7010 2
0.3901 0.8823 0.8513 1.2123 0.7291 0.6977 3

Framework versions

  • Transformers 4.20.1
  • TensorFlow 2.6.4
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support