|
""" |
|
2025.3.12 |
|
2025.3.14 |
|
4.48.3 |
|
0.15.2 |
|
__UNSLOTH_VERSIONING__ |
|
""" |
|
from torch import Tensor |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from trl.trainer.ddpo_trainer import (Accelerator, Any, Callable, DDPOConfig, DDPOStableDiffusionPipeline, DDPOTrainer, Optional, PerPromptStatTracker, ProjectConfiguration, PyTorchModelHubMixin, Union, defaultdict, futures, generate_model_card, get_comet_experiment_url, is_wandb_available, logger, os, set_seed, textwrap, torch, wandb, warn) |
|
|
|
|
|
import os |
|
from typing import * |
|
from dataclasses import dataclass, field |
|
from packaging.version import Version |
|
import torch |
|
import numpy as np |
|
from contextlib import nullcontext |
|
from torch.nn import functional as F |
|
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling |
|
|
|
torch_compile_options = { |
|
"epilogue_fusion" : True, |
|
"max_autotune" : False, |
|
"shape_padding" : True, |
|
"trace.enabled" : False, |
|
"triton.cudagraphs" : False, |
|
} |
|
|
|
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,) |
|
def selective_log_softmax(logits, index): |
|
logits = logits.to(torch.float32) |
|
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) |
|
|
|
|
|
logsumexp_values = torch.logsumexp(logits, dim = -1) |
|
per_token_logps = selected_logits - logsumexp_values |
|
return per_token_logps |
|
@dataclass |
|
class UnslothDDPOConfig(DDPOConfig): |
|
""" |
|
|
|
Configuration class for the [`DDPOTrainer`]. |
|
|
|
Using [`~transformers.HfArgumentParser`] we can turn this class into |
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the |
|
command line. |
|
|
|
Parameters: |
|
exp_name (`str`, *optional*, defaults to `os.path.basename(sys.argv[0])[: -len(".py")]`): |
|
Name of this experiment (by default is the file name without the extension name). |
|
run_name (`str`, *optional*, defaults to `""`): |
|
Name of this run. |
|
seed (`int`, *optional*, defaults to `0`): |
|
Random seed. |
|
log_with (`Literal["wandb", "tensorboard"]]` or `None`, *optional*, defaults to `None`): |
|
Log with either 'wandb' or 'tensorboard', check |
|
https://huggingface.co/docs/accelerate/usage_guides/tracking for more details. |
|
tracker_kwargs (`Dict`, *optional*, defaults to `{}`): |
|
Keyword arguments for the tracker (e.g. wandb_project). |
|
accelerator_kwargs (`Dict`, *optional*, defaults to `{}`): |
|
Keyword arguments for the accelerator. |
|
project_kwargs (`Dict`, *optional*, defaults to `{}`): |
|
Keyword arguments for the accelerator project config (e.g. `logging_dir`). |
|
tracker_project_name (`str`, *optional*, defaults to `"trl"`): |
|
Name of project to use for tracking. |
|
logdir (`str`, *optional*, defaults to `"logs"`): |
|
Top-level logging directory for checkpoint saving. |
|
num_epochs (`int`, *optional*, defaults to `100`): |
|
Number of epochs to train. |
|
save_freq (`int`, *optional*, defaults to `1`): |
|
Number of epochs between saving model checkpoints. |
|
num_checkpoint_limit (`int`, *optional*, defaults to `5`): |
|
Number of checkpoints to keep before overwriting old ones. |
|
mixed_precision (`str`, *optional*, defaults to `"fp16"`): |
|
Mixed precision training. |
|
allow_tf32 (`bool`, *optional*, defaults to `True`): |
|
Allow `tf32` on Ampere GPUs. |
|
resume_from (`str`, *optional*, defaults to `""`): |
|
Resume training from a checkpoint. |
|
sample_num_steps (`int`, *optional*, defaults to `50`): |
|
Number of sampler inference steps. |
|
sample_eta (`float`, *optional*, defaults to `1.0`): |
|
Eta parameter for the DDIM sampler. |
|
sample_guidance_scale (`float`, *optional*, defaults to `5.0`): |
|
Classifier-free guidance weight. |
|
sample_batch_size (`int`, *optional*, defaults to `1`): |
|
Batch size (per GPU) to use for sampling. |
|
sample_num_batches_per_epoch (`int`, *optional*, defaults to `2`): |
|
Number of batches to sample per epoch. |
|
train_batch_size (`int`, *optional*, defaults to `1`): |
|
Batch size (per GPU) to use for training. |
|
train_use_8bit_adam (`bool`, *optional*, defaults to `False`): |
|
Use 8bit Adam optimizer from bitsandbytes. |
|
train_learning_rate (`float`, *optional*, defaults to `3e-4`): |
|
Learning rate. |
|
train_adam_beta1 (`float`, *optional*, defaults to `0.9`): |
|
Adam beta1. |
|
train_adam_beta2 (`float`, *optional*, defaults to `0.999`): |
|
Adam beta2. |
|
train_adam_weight_decay (`float`, *optional*, defaults to `1e-4`): |
|
Adam weight decay. |
|
train_adam_epsilon (`float`, *optional*, defaults to `1e-8`): |
|
Adam epsilon. |
|
train_gradient_accumulation_steps (`int`, *optional*, defaults to `1`): |
|
Number of gradient accumulation steps. |
|
train_max_grad_norm (`float`, *optional*, defaults to `1.0`): |
|
Maximum gradient norm for gradient clipping. |
|
train_num_inner_epochs (`int`, *optional*, defaults to `1`): |
|
Number of inner epochs per outer epoch. |
|
train_cfg (`bool`, *optional*, defaults to `True`): |
|
Whether to use classifier-free guidance during training. |
|
train_adv_clip_max (`float`, *optional*, defaults to `5.0`): |
|
Clip advantages to the range. |
|
train_clip_range (`float`, *optional*, defaults to `1e-4`): |
|
PPO clip range. |
|
train_timestep_fraction (`float`, *optional*, defaults to `1.0`): |
|
Fraction of timesteps to train on. |
|
per_prompt_stat_tracking (`bool`, *optional*, defaults to `False`): |
|
Whether to track statistics for each prompt separately. |
|
per_prompt_stat_tracking_buffer_size (`int`, *optional*, defaults to `16`): |
|
Number of reward values to store in the buffer for each prompt. |
|
per_prompt_stat_tracking_min_count (`int`, *optional*, defaults to `16`): |
|
Minimum number of reward values to store in the buffer. |
|
async_reward_computation (`bool`, *optional*, defaults to `False`): |
|
Whether to compute rewards asynchronously. |
|
max_workers (`int`, *optional*, defaults to `2`): |
|
Maximum number of workers to use for async reward computation. |
|
negative_prompts (`str`, *optional*, defaults to `""`): |
|
Comma-separated list of prompts to use as negative examples. |
|
push_to_hub (`bool`, *optional*, defaults to `False`): |
|
Whether to push the final model checkpoint to the Hub. |
|
|
|
""" |
|
vllm_sampling_params: Optional[Any] = field( |
|
default = None, |
|
metadata = {'help': 'vLLM SamplingParams'}, |
|
) |
|
unsloth_num_chunks : Optional[int] = field( |
|
default = -1, |
|
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, |
|
) |
|
def __init__( |
|
self, |
|
exp_name = 'colab_kernel_launcher', |
|
run_name = '', |
|
seed = 3407, |
|
log_with = None, |
|
tracker_project_name = 'trl', |
|
logdir = 'logs', |
|
num_epochs = 100, |
|
save_freq = 1, |
|
num_checkpoint_limit = 5, |
|
mixed_precision = 'fp16', |
|
allow_tf32 = True, |
|
resume_from = '', |
|
sample_num_steps = 50, |
|
sample_eta = 1.0, |
|
sample_guidance_scale = 5.0, |
|
sample_batch_size = 1, |
|
sample_num_batches_per_epoch = 2, |
|
train_batch_size = 1, |
|
train_use_8bit_adam = False, |
|
train_learning_rate = 5e-05, |
|
train_adam_beta1 = 0.9, |
|
train_adam_beta2 = 0.999, |
|
train_adam_weight_decay = 0.01, |
|
train_adam_epsilon = 1e-08, |
|
train_gradient_accumulation_steps = 2, |
|
train_max_grad_norm = 1.0, |
|
train_num_inner_epochs = 1, |
|
train_cfg = True, |
|
train_adv_clip_max = 5.0, |
|
train_clip_range = 0.0001, |
|
train_timestep_fraction = 1.0, |
|
per_prompt_stat_tracking = False, |
|
per_prompt_stat_tracking_buffer_size = 16, |
|
per_prompt_stat_tracking_min_count = 16, |
|
async_reward_computation = False, |
|
max_workers = 2, |
|
negative_prompts = '', |
|
push_to_hub = False, |
|
vllm_sampling_params = None, |
|
unsloth_num_chunks = -1, |
|
**kwargs, |
|
): |
|
|
|
super().__init__( |
|
exp_name = exp_name, |
|
run_name = run_name, |
|
seed = seed, |
|
log_with = log_with, |
|
tracker_project_name = tracker_project_name, |
|
logdir = logdir, |
|
num_epochs = num_epochs, |
|
save_freq = save_freq, |
|
num_checkpoint_limit = num_checkpoint_limit, |
|
mixed_precision = mixed_precision, |
|
allow_tf32 = allow_tf32, |
|
resume_from = resume_from, |
|
sample_num_steps = sample_num_steps, |
|
sample_eta = sample_eta, |
|
sample_guidance_scale = sample_guidance_scale, |
|
sample_batch_size = sample_batch_size, |
|
sample_num_batches_per_epoch = sample_num_batches_per_epoch, |
|
train_batch_size = train_batch_size, |
|
train_use_8bit_adam = train_use_8bit_adam, |
|
train_learning_rate = train_learning_rate, |
|
train_adam_beta1 = train_adam_beta1, |
|
train_adam_beta2 = train_adam_beta2, |
|
train_adam_weight_decay = train_adam_weight_decay, |
|
train_adam_epsilon = train_adam_epsilon, |
|
train_gradient_accumulation_steps = train_gradient_accumulation_steps, |
|
train_max_grad_norm = train_max_grad_norm, |
|
train_num_inner_epochs = train_num_inner_epochs, |
|
train_cfg = train_cfg, |
|
train_adv_clip_max = train_adv_clip_max, |
|
train_clip_range = train_clip_range, |
|
train_timestep_fraction = train_timestep_fraction, |
|
per_prompt_stat_tracking = per_prompt_stat_tracking, |
|
per_prompt_stat_tracking_buffer_size = per_prompt_stat_tracking_buffer_size, |
|
per_prompt_stat_tracking_min_count = per_prompt_stat_tracking_min_count, |
|
async_reward_computation = async_reward_computation, |
|
max_workers = max_workers, |
|
negative_prompts = negative_prompts, |
|
push_to_hub = push_to_hub,**kwargs) |
|
self.vllm_sampling_params = vllm_sampling_params |
|
self.unsloth_num_chunks = unsloth_num_chunks |
|
pass |
|
|
|
class _UnslothDDPOTrainer(PyTorchModelHubMixin): |
|
"""""" |
|
|
|
_tag_names = ["trl", "ddpo"] |
|
|
|
def __init__( |
|
self, |
|
config: DDPOConfig, |
|
reward_function: Callable[[torch.Tensor, tuple[str], tuple[Any]], torch.Tensor], |
|
prompt_function: Callable[[], tuple[str, Any]], |
|
sd_pipeline: DDPOStableDiffusionPipeline, |
|
image_samples_hook: Optional[Callable[[Any, Any, Any], Any]] = None, |
|
): |
|
if image_samples_hook is None: |
|
warn("No image_samples_hook provided; no images will be logged") |
|
|
|
self.prompt_fn = prompt_function |
|
self.reward_fn = reward_function |
|
self.config = config |
|
self.image_samples_callback = image_samples_hook |
|
|
|
accelerator_project_config = ProjectConfiguration(**self.config.project_kwargs) |
|
|
|
if self.config.resume_from: |
|
self.config.resume_from = os.path.normpath(os.path.expanduser(self.config.resume_from)) |
|
if "checkpoint_" not in os.path.basename(self.config.resume_from): |
|
|
|
checkpoints = list( |
|
filter( |
|
lambda x: "checkpoint_" in x, |
|
os.listdir(self.config.resume_from), |
|
) |
|
) |
|
if len(checkpoints) == 0: |
|
raise ValueError(f"No checkpoints found in {self.config.resume_from}") |
|
checkpoint_numbers = sorted([int(x.split("_")[-1]) for x in checkpoints]) |
|
self.config.resume_from = os.path.join( |
|
self.config.resume_from, |
|
f"checkpoint_{checkpoint_numbers[-1]}", |
|
) |
|
|
|
accelerator_project_config.iteration = checkpoint_numbers[-1] + 1 |
|
|
|
|
|
self.num_train_timesteps = int(self.config.sample_num_steps * self.config.train_timestep_fraction) |
|
|
|
self.accelerator = Accelerator( |
|
log_with=self.config.log_with, |
|
mixed_precision=self.config.mixed_precision, |
|
project_config=accelerator_project_config, |
|
|
|
|
|
|
|
gradient_accumulation_steps=self.config.train_gradient_accumulation_steps * self.num_train_timesteps, |
|
**self.config.accelerator_kwargs, |
|
) |
|
|
|
is_okay, message = self._config_check() |
|
if not is_okay: |
|
raise ValueError(message) |
|
|
|
is_using_tensorboard = config.log_with is not None and config.log_with == "tensorboard" |
|
|
|
if self.accelerator.is_main_process: |
|
self.accelerator.init_trackers( |
|
self.config.tracker_project_name, |
|
config=dict(ddpo_trainer_config=config.to_dict()) if not is_using_tensorboard else config.to_dict(), |
|
init_kwargs=self.config.tracker_kwargs, |
|
) |
|
|
|
logger.info(f"\n{config}") |
|
|
|
set_seed(self.config.seed, device_specific=True) |
|
|
|
self.sd_pipeline = sd_pipeline |
|
|
|
self.sd_pipeline.set_progress_bar_config( |
|
position=1, |
|
disable=not self.accelerator.is_local_main_process, |
|
leave=False, |
|
desc="Timestep", |
|
dynamic_ncols=True, |
|
) |
|
|
|
|
|
|
|
if self.accelerator.mixed_precision == "fp16": |
|
inference_dtype = torch.float16 |
|
elif self.accelerator.mixed_precision == "bf16": |
|
inference_dtype = torch.bfloat16 |
|
else: |
|
inference_dtype = torch.float32 |
|
|
|
self.sd_pipeline.vae.to(self.accelerator.device, dtype=inference_dtype) |
|
self.sd_pipeline.text_encoder.to(self.accelerator.device, dtype=inference_dtype) |
|
self.sd_pipeline.unet.to(self.accelerator.device, dtype=inference_dtype) |
|
|
|
trainable_layers = self.sd_pipeline.get_trainable_layers() |
|
|
|
self.accelerator.register_save_state_pre_hook(self._save_model_hook) |
|
self.accelerator.register_load_state_pre_hook(self._load_model_hook) |
|
|
|
|
|
|
|
if self.config.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
self.optimizer = self._setup_optimizer( |
|
trainable_layers.parameters() if not isinstance(trainable_layers, list) else trainable_layers |
|
) |
|
|
|
self.neg_prompt_embed = self.sd_pipeline.text_encoder( |
|
self.sd_pipeline.tokenizer( |
|
[""] if self.config.negative_prompts is None else self.config.negative_prompts, |
|
return_tensors="pt", |
|
padding="max_length", |
|
truncation=True, |
|
max_length=self.sd_pipeline.tokenizer.model_max_length, |
|
).input_ids.to(self.accelerator.device) |
|
)[0] |
|
|
|
if config.per_prompt_stat_tracking: |
|
self.stat_tracker = PerPromptStatTracker( |
|
config.per_prompt_stat_tracking_buffer_size, |
|
config.per_prompt_stat_tracking_min_count, |
|
) |
|
|
|
|
|
|
|
self.autocast = self.sd_pipeline.autocast or self.accelerator.autocast |
|
|
|
if hasattr(self.sd_pipeline, "use_lora") and self.sd_pipeline.use_lora: |
|
unet, self.optimizer = self.accelerator.prepare(trainable_layers, self.optimizer) |
|
self.trainable_layers = list(filter(lambda p: p.requires_grad, unet.parameters())) |
|
else: |
|
self.trainable_layers, self.optimizer = self.accelerator.prepare(trainable_layers, self.optimizer) |
|
|
|
if self.config.async_reward_computation: |
|
self.executor = futures.ThreadPoolExecutor(max_workers=config.max_workers) |
|
|
|
if config.resume_from: |
|
logger.info(f"Resuming from {config.resume_from}") |
|
self.accelerator.load_state(config.resume_from) |
|
self.first_epoch = int(config.resume_from.split("_")[-1]) + 1 |
|
else: |
|
self.first_epoch = 0 |
|
|
|
def compute_rewards(self, prompt_image_pairs, is_async=False): |
|
if not is_async: |
|
rewards = [] |
|
for images, prompts, prompt_metadata in prompt_image_pairs: |
|
reward, reward_metadata = self.reward_fn(images, prompts, prompt_metadata) |
|
rewards.append( |
|
( |
|
torch.as_tensor(reward, device=self.accelerator.device), |
|
reward_metadata, |
|
) |
|
) |
|
else: |
|
rewards = self.executor.map(lambda x: self.reward_fn(*x), prompt_image_pairs) |
|
rewards = [ |
|
(torch.as_tensor(reward.result(), device=self.accelerator.device), reward_metadata.result()) |
|
for reward, reward_metadata in rewards |
|
] |
|
|
|
return zip(*rewards) |
|
|
|
def step(self, epoch: int, global_step: int): |
|
""" |
|
Perform a single step of training. |
|
|
|
Args: |
|
epoch (int): The current epoch. |
|
global_step (int): The current global step. |
|
|
|
Side Effects: |
|
- Model weights are updated |
|
- Logs the statistics to the accelerator trackers. |
|
- If `self.image_samples_callback` is not None, it will be called with the prompt_image_pairs, global_step, and the accelerator tracker. |
|
|
|
Returns: |
|
global_step (int): The updated global step. |
|
|
|
""" |
|
samples, prompt_image_data = self._generate_samples( |
|
iterations=self.config.sample_num_batches_per_epoch, |
|
batch_size=self.config.sample_batch_size, |
|
) |
|
|
|
|
|
samples = {k: torch.cat([s[k] for s in samples]) for k in samples[0].keys()} |
|
rewards, rewards_metadata = self.compute_rewards( |
|
prompt_image_data, is_async=self.config.async_reward_computation |
|
) |
|
|
|
for i, image_data in enumerate(prompt_image_data): |
|
image_data.extend([rewards[i], rewards_metadata[i]]) |
|
|
|
if self.image_samples_callback is not None: |
|
self.image_samples_callback(prompt_image_data, global_step, self.accelerator.trackers[0]) |
|
|
|
rewards = torch.cat(rewards) |
|
rewards = self.accelerator.gather(rewards).cpu().numpy() |
|
|
|
self.accelerator.log( |
|
{ |
|
"reward": rewards, |
|
"epoch": epoch, |
|
"reward_mean": rewards.mean(), |
|
"reward_std": rewards.std(), |
|
}, |
|
step=global_step, |
|
) |
|
|
|
if self.config.per_prompt_stat_tracking: |
|
|
|
prompt_ids = self.accelerator.gather(samples["prompt_ids"]).cpu().numpy() |
|
prompts = self.sd_pipeline.tokenizer.batch_decode(prompt_ids, skip_special_tokens=True) |
|
advantages = self.stat_tracker.update(prompts, rewards) |
|
else: |
|
advantages = (rewards - rewards.mean()) / (rewards.std() + 1e-8) |
|
|
|
|
|
samples["advantages"] = ( |
|
torch.as_tensor(advantages) |
|
.reshape(self.accelerator.num_processes, -1)[self.accelerator.process_index] |
|
.to(self.accelerator.device) |
|
) |
|
|
|
del samples["prompt_ids"] |
|
|
|
total_batch_size, num_timesteps = samples["timesteps"].shape |
|
|
|
for inner_epoch in range(self.config.train_num_inner_epochs): |
|
|
|
perm = torch.randperm(total_batch_size, device=self.accelerator.device) |
|
samples = {k: v[perm] for k, v in samples.items()} |
|
|
|
|
|
|
|
perms = torch.stack( |
|
[torch.randperm(num_timesteps, device=self.accelerator.device) for _ in range(total_batch_size)] |
|
) |
|
|
|
for key in ["timesteps", "latents", "next_latents", "log_probs"]: |
|
samples[key] = samples[key][ |
|
torch.arange(total_batch_size, device=self.accelerator.device)[:, None], |
|
perms, |
|
] |
|
|
|
original_keys = samples.keys() |
|
original_values = samples.values() |
|
|
|
reshaped_values = [v.reshape(-1, self.config.train_batch_size, *v.shape[1:]) for v in original_values] |
|
|
|
|
|
transposed_values = zip(*reshaped_values) |
|
|
|
samples_batched = [dict(zip(original_keys, row_values)) for row_values in transposed_values] |
|
|
|
self.sd_pipeline.unet.train() |
|
global_step = self._train_batched_samples(inner_epoch, epoch, global_step, samples_batched) |
|
|
|
if not self.accelerator.sync_gradients: |
|
raise ValueError( |
|
"Optimization step should have been performed by this point. Please check calculated gradient accumulation settings." |
|
) |
|
|
|
if epoch != 0 and epoch % self.config.save_freq == 0 and self.accelerator.is_main_process: |
|
self.accelerator.save_state() |
|
|
|
return global_step |
|
|
|
def calculate_loss(self, latents, timesteps, next_latents, log_probs, advantages, embeds): |
|
""" |
|
Calculate the loss for a batch of an unpacked sample |
|
|
|
Args: |
|
latents (torch.Tensor): |
|
The latents sampled from the diffusion model, shape: [batch_size, num_channels_latents, height, width] |
|
timesteps (torch.Tensor): |
|
The timesteps sampled from the diffusion model, shape: [batch_size] |
|
next_latents (torch.Tensor): |
|
The next latents sampled from the diffusion model, shape: [batch_size, num_channels_latents, height, width] |
|
log_probs (torch.Tensor): |
|
The log probabilities of the latents, shape: [batch_size] |
|
advantages (torch.Tensor): |
|
The advantages of the latents, shape: [batch_size] |
|
embeds (torch.Tensor): |
|
The embeddings of the prompts, shape: [2*batch_size or batch_size, ...] |
|
Note: the "or" is because if train_cfg is True, the expectation is that negative prompts are concatenated to the embeds |
|
|
|
Returns: |
|
loss (torch.Tensor), approx_kl (torch.Tensor), clipfrac (torch.Tensor) |
|
(all of these are of shape (1,)) |
|
""" |
|
with self.autocast(): |
|
if self.config.train_cfg: |
|
noise_pred = self.sd_pipeline.unet( |
|
torch.cat([latents] * 2), |
|
torch.cat([timesteps] * 2), |
|
embeds, |
|
).sample |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.config.sample_guidance_scale * ( |
|
noise_pred_text - noise_pred_uncond |
|
) |
|
else: |
|
noise_pred = self.sd_pipeline.unet( |
|
latents, |
|
timesteps, |
|
embeds, |
|
).sample |
|
|
|
|
|
scheduler_step_output = self.sd_pipeline.scheduler_step( |
|
noise_pred, |
|
timesteps, |
|
latents, |
|
eta=self.config.sample_eta, |
|
prev_sample=next_latents, |
|
) |
|
|
|
log_prob = scheduler_step_output.log_probs |
|
|
|
advantages = torch.clamp( |
|
advantages, |
|
-self.config.train_adv_clip_max, |
|
self.config.train_adv_clip_max, |
|
) |
|
|
|
ratio = torch.exp(log_prob - log_probs) |
|
|
|
loss = self.loss(advantages, self.config.train_clip_range, ratio) |
|
|
|
approx_kl = 0.5 * torch.mean((log_prob - log_probs) ** 2) |
|
|
|
clipfrac = torch.mean((torch.abs(ratio - 1.0) > self.config.train_clip_range).float()) |
|
|
|
return loss, approx_kl, clipfrac |
|
|
|
def loss( |
|
self, |
|
advantages: torch.Tensor, |
|
clip_range: float, |
|
ratio: torch.Tensor, |
|
): |
|
unclipped_loss = -advantages * ratio |
|
clipped_loss = -advantages * torch.clamp( |
|
ratio, |
|
1.0 - clip_range, |
|
1.0 + clip_range, |
|
) |
|
return torch.mean(torch.maximum(unclipped_loss, clipped_loss)) |
|
|
|
def _setup_optimizer(self, trainable_layers_parameters): |
|
if self.config.train_use_8bit_adam: |
|
import bitsandbytes |
|
|
|
optimizer_cls = bitsandbytes.optim.AdamW8bit |
|
else: |
|
optimizer_cls = torch.optim.AdamW |
|
|
|
return optimizer_cls( |
|
trainable_layers_parameters, |
|
lr=self.config.train_learning_rate, |
|
betas=(self.config.train_adam_beta1, self.config.train_adam_beta2), |
|
weight_decay=self.config.train_adam_weight_decay, |
|
eps=self.config.train_adam_epsilon, |
|
) |
|
|
|
def _save_model_hook(self, models, weights, output_dir): |
|
self.sd_pipeline.save_checkpoint(models, weights, output_dir) |
|
weights.pop() |
|
|
|
def _load_model_hook(self, models, input_dir): |
|
self.sd_pipeline.load_checkpoint(models, input_dir) |
|
models.pop() |
|
|
|
def _generate_samples(self, iterations, batch_size): |
|
""" |
|
Generate samples from the model |
|
|
|
Args: |
|
iterations (int): Number of iterations to generate samples for |
|
batch_size (int): Batch size to use for sampling |
|
|
|
Returns: |
|
samples (list[dict[str, torch.Tensor]]), prompt_image_pairs (list[list[Any]]) |
|
""" |
|
samples = [] |
|
prompt_image_pairs = [] |
|
self.sd_pipeline.unet.eval() |
|
|
|
sample_neg_prompt_embeds = self.neg_prompt_embed.repeat(batch_size, 1, 1) |
|
|
|
for _ in range(iterations): |
|
prompts, prompt_metadata = zip(*[self.prompt_fn() for _ in range(batch_size)]) |
|
|
|
prompt_ids = self.sd_pipeline.tokenizer( |
|
prompts, |
|
return_tensors="pt", |
|
padding="max_length", |
|
truncation=True, |
|
max_length=self.sd_pipeline.tokenizer.model_max_length, |
|
).input_ids.to(self.accelerator.device) |
|
prompt_embeds = self.sd_pipeline.text_encoder(prompt_ids)[0] |
|
|
|
with self.autocast(): |
|
sd_output = self.sd_pipeline( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=sample_neg_prompt_embeds, |
|
num_inference_steps=self.config.sample_num_steps, |
|
guidance_scale=self.config.sample_guidance_scale, |
|
eta=self.config.sample_eta, |
|
output_type="pt", |
|
) |
|
|
|
images = sd_output.images |
|
latents = sd_output.latents |
|
log_probs = sd_output.log_probs |
|
|
|
latents = torch.stack(latents, dim=1) |
|
log_probs = torch.stack(log_probs, dim=1) |
|
timesteps = self.sd_pipeline.scheduler.timesteps.repeat(batch_size, 1) |
|
|
|
samples.append( |
|
{ |
|
"prompt_ids": prompt_ids, |
|
"prompt_embeds": prompt_embeds, |
|
"timesteps": timesteps, |
|
"latents": latents[:, :-1], |
|
"next_latents": latents[:, 1:], |
|
"log_probs": log_probs, |
|
"negative_prompt_embeds": sample_neg_prompt_embeds, |
|
} |
|
) |
|
prompt_image_pairs.append([images, prompts, prompt_metadata]) |
|
|
|
return samples, prompt_image_pairs |
|
|
|
def _train_batched_samples(self, inner_epoch, epoch, global_step, batched_samples): |
|
""" |
|
Train on a batch of samples. Main training segment |
|
|
|
Args: |
|
inner_epoch (int): The current inner epoch |
|
epoch (int): The current epoch |
|
global_step (int): The current global step |
|
batched_samples (list[dict[str, torch.Tensor]]): The batched samples to train on |
|
|
|
Side Effects: |
|
- Model weights are updated |
|
- Logs the statistics to the accelerator trackers. |
|
|
|
Returns: |
|
global_step (int): The updated global step |
|
""" |
|
info = defaultdict(list) |
|
for _i, sample in enumerate(batched_samples): |
|
if self.config.train_cfg: |
|
|
|
embeds = torch.cat([sample["negative_prompt_embeds"], sample["prompt_embeds"]]) |
|
else: |
|
embeds = sample["prompt_embeds"] |
|
|
|
for j in range(self.num_train_timesteps): |
|
with self.accelerator.accumulate(self.sd_pipeline.unet): |
|
loss, approx_kl, clipfrac = self.calculate_loss( |
|
sample["latents"][:, j], |
|
sample["timesteps"][:, j], |
|
sample["next_latents"][:, j], |
|
sample["log_probs"][:, j], |
|
sample["advantages"], |
|
embeds, |
|
) |
|
info["approx_kl"].append(approx_kl) |
|
info["clipfrac"].append(clipfrac) |
|
info["loss"].append(loss) |
|
|
|
self.accelerator.backward(loss) |
|
if self.accelerator.sync_gradients: |
|
self.accelerator.clip_grad_norm_( |
|
self.trainable_layers.parameters() |
|
if not isinstance(self.trainable_layers, list) |
|
else self.trainable_layers, |
|
self.config.train_max_grad_norm, |
|
) |
|
self.optimizer.step() |
|
self.optimizer.zero_grad() |
|
|
|
|
|
if self.accelerator.sync_gradients: |
|
|
|
info = {k: torch.mean(torch.stack(v)) for k, v in info.items()} |
|
info = self.accelerator.reduce(info, reduction="mean") |
|
info.update({"epoch": epoch, "inner_epoch": inner_epoch}) |
|
self.accelerator.log(info, step=global_step) |
|
global_step += 1 |
|
info = defaultdict(list) |
|
return global_step |
|
|
|
def _config_check(self) -> tuple[bool, str]: |
|
samples_per_epoch = ( |
|
self.config.sample_batch_size * self.accelerator.num_processes * self.config.sample_num_batches_per_epoch |
|
) |
|
total_train_batch_size = ( |
|
self.config.train_batch_size |
|
* self.accelerator.num_processes |
|
* self.config.train_gradient_accumulation_steps |
|
) |
|
|
|
if not self.config.sample_batch_size >= self.config.train_batch_size: |
|
return ( |
|
False, |
|
f"Sample batch size ({self.config.sample_batch_size}) must be greater than or equal to the train batch size ({self.config.train_batch_size})", |
|
) |
|
if not self.config.sample_batch_size % self.config.train_batch_size == 0: |
|
return ( |
|
False, |
|
f"Sample batch size ({self.config.sample_batch_size}) must be divisible by the train batch size ({self.config.train_batch_size})", |
|
) |
|
if not samples_per_epoch % total_train_batch_size == 0: |
|
return ( |
|
False, |
|
f"Number of samples per epoch ({samples_per_epoch}) must be divisible by the total train batch size ({total_train_batch_size})", |
|
) |
|
return True, "" |
|
|
|
def train(self, epochs: Optional[int] = None): |
|
""" |
|
Train the model for a given number of epochs |
|
""" |
|
global_step = 0 |
|
if epochs is None: |
|
epochs = self.config.num_epochs |
|
for epoch in range(self.first_epoch, epochs): |
|
global_step = self.step(epoch, global_step) |
|
|
|
def _save_pretrained(self, save_directory): |
|
self.sd_pipeline.save_pretrained(save_directory) |
|
self.create_model_card() |
|
|
|
def create_model_card( |
|
self, |
|
model_name: Optional[str] = None, |
|
dataset_name: Optional[str] = None, |
|
tags: Union[str, list[str], None] = None, |
|
): |
|
""" |
|
Creates a draft of a model card using the information available to the `Trainer`. |
|
|
|
Args: |
|
model_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the model. |
|
dataset_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the dataset used for training. |
|
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): |
|
Tags to be associated with the model card. |
|
""" |
|
if not self.is_world_process_zero(): |
|
return |
|
|
|
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): |
|
base_model = self.model.config._name_or_path |
|
else: |
|
base_model = None |
|
|
|
tags = tags or [] |
|
if isinstance(tags, str): |
|
tags = [tags] |
|
|
|
if hasattr(self.model.config, "unsloth_version"): |
|
tags.append("unsloth") |
|
|
|
citation = textwrap.dedent("""\ |
|
@inproceedings{black2024training, |
|
title = {{Training Diffusion Models with Reinforcement Learning}}, |
|
author = {Kevin Black and Michael Janner and Yilun Du and Ilya Kostrikov and Sergey Levine}, |
|
year = 2024, |
|
booktitle = {The Twelfth International Conference on Learning Representations, {ICLR} 2024, Vienna, Austria, May 7-11, 2024}, |
|
publisher = {OpenReview.net}, |
|
url = {https://openreview.net/forum?id=YCWjhGrJFD}, |
|
}""") |
|
|
|
model_card = generate_model_card( |
|
base_model=base_model, |
|
model_name=model_name, |
|
hub_model_id=self.hub_model_id, |
|
dataset_name=dataset_name, |
|
tags=tags, |
|
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, |
|
comet_url=get_comet_experiment_url(), |
|
trainer_name="DDPO", |
|
trainer_citation=citation, |
|
paper_title="Training Diffusion Models with Reinforcement Learning", |
|
paper_id="2305.13301", |
|
) |
|
|
|
model_card.save(os.path.join(self.args.output_dir, "README.md")) |
|
class UnslothDDPOTrainer(_UnslothDDPOTrainer): |
|
""" |
|
|
|
The DDPOTrainer uses Deep Diffusion Policy Optimization to optimise diffusion models. |
|
Note, this trainer is heavily inspired by the work here: https://github.com/kvablack/ddpo-pytorch |
|
As of now only Stable Diffusion based pipelines are supported |
|
|
|
Attributes: |
|
**config** (`DDPOConfig`) -- Configuration object for DDPOTrainer. Check the documentation of `PPOConfig` for more |
|
details. |
|
**reward_function** (Callable[[torch.Tensor, tuple[str], tuple[Any]], torch.Tensor]) -- Reward function to be used |
|
**prompt_function** (Callable[[], tuple[str, Any]]) -- Function to generate prompts to guide model |
|
**sd_pipeline** (`DDPOStableDiffusionPipeline`) -- Stable Diffusion pipeline to be used for training. |
|
**image_samples_hook** (Optional[Callable[[Any, Any, Any], Any]]) -- Hook to be called to log images |
|
|
|
""" |
|
def __init__( |
|
self, |
|
config, |
|
reward_function, |
|
prompt_function, |
|
sd_pipeline, |
|
image_samples_hook = None, |
|
**kwargs |
|
): |
|
if args is None: args = UnslothDDPOConfig() |
|
other_metrics = [] |
|
|
|
from unsloth_zoo.logging_utils import PatchRLStatistics |
|
PatchRLStatistics('ddpo_trainer', other_metrics) |
|
|
|
super().__init__( |
|
config = config, |
|
reward_function = reward_function, |
|
prompt_function = prompt_function, |
|
sd_pipeline = sd_pipeline, |
|
image_samples_hook = image_samples_hook,**kwargs) |
|
|
|
pass |
|
|