|
""" |
|
2025.3.12 |
|
2025.3.14 |
|
4.48.3 |
|
0.15.2 |
|
__UNSLOTH_VERSIONING__ |
|
""" |
|
from torch import Tensor |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from trl.trainer.grpo_trainer import (Any, AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, Dataset, GRPOConfig, GRPOTrainer, GenerationConfig, IterableDataset, Optional, PeftConfig, PreTrainedModel, PreTrainedTokenizerBase, RepeatRandomSampler, RewardFunc, Sampler, SyncRefModelCallback, Trainer, TrainerCallback, Union, apply_chat_template, broadcast_object_list, create_reference_model, defaultdict, gather, gather_object, generate_model_card, get_comet_experiment_url, is_conversational, is_deepspeed_zero3_enabled, is_peft_model, is_wandb_available, maybe_apply_chat_template, nn, os, pad, patch, prepare_deepspeed, set_seed, textwrap, torch, transformers, unwrap_model_for_generation, version, wandb, warnings, os, torch, transformers, Any, Union, apply_chat_template, broadcast_object_list, gather, gather_object, is_conversational, maybe_apply_chat_template, nn, os, pad, torch, unwrap_model_for_generation, wandb, GRPOTrainer, Trainer, gather, os, torch) |
|
|
|
|
|
import os |
|
from typing import * |
|
from dataclasses import dataclass, field |
|
from packaging.version import Version |
|
import torch |
|
import numpy as np |
|
from contextlib import nullcontext |
|
from torch.nn import functional as F |
|
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling |
|
|
|
torch_compile_options = { |
|
"epilogue_fusion" : True, |
|
"max_autotune" : False, |
|
"shape_padding" : True, |
|
"trace.enabled" : False, |
|
"triton.cudagraphs" : False, |
|
} |
|
|
|
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,) |
|
def selective_log_softmax(logits, index): |
|
logits = logits.to(torch.float32) |
|
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) |
|
|
|
|
|
logsumexp_values = torch.logsumexp(logits, dim = -1) |
|
per_token_logps = selected_logits - logsumexp_values |
|
return per_token_logps |
|
|
|
def grpo_compute_loss(old_logits, new_logits, input_ids, mask, beta, advantages): |
|
|
|
old_logits = old_logits.to(torch.float32) |
|
new_logits = new_logits.to(torch.float32) |
|
input_ids = input_ids.unsqueeze(-1) |
|
|
|
|
|
old_x = torch.gather(old_logits, dim = -1, index = input_ids).squeeze(-1) |
|
new_x = torch.gather(new_logits, dim = -1, index = input_ids).squeeze(-1) |
|
old = old_x - torch.logsumexp(old_logits, dim = -1) |
|
new = new_x - torch.logsumexp(new_logits, dim = -1) |
|
|
|
|
|
kl_i = torch.exp(old - new) - (old - new) - 1.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loss_i = torch.exp(new - new.detach()) * advantages.unsqueeze(1) |
|
loss_i = -(loss_i - beta * kl_i) |
|
|
|
mask = mask.to(torch.float32) |
|
n_mask_per_reward = mask.sum(1) |
|
|
|
|
|
|
|
|
|
loss = (loss_i * mask).sum() / mask.sum() |
|
|
|
|
|
with torch.inference_mode(): |
|
completion_length = n_mask_per_reward.mean() |
|
mean_kl_per_reward = (kl_i * mask).sum(1) / n_mask_per_reward |
|
mean_kl = mean_kl_per_reward.mean() |
|
pass |
|
return loss, completion_length, mean_kl |
|
|
|
class UnslothEfficientGRPO(torch.autograd.Function): |
|
|
|
@staticmethod |
|
def forward(ctx, _new_hidden_states, _old_hidden_states, lm_head, _input_ids, _mask, _advantages, beta, scaler = None, n_chunks = 1): |
|
def compute_loss(new_hidden_states, old_hidden_states, input_ids, mask, advantages, scaling): |
|
new_logits = torch.matmul(new_hidden_states, lm_head.t()) |
|
new_logits = new_logits[:, :-1, :] |
|
old_logits = torch.matmul(old_hidden_states, lm_head.t()) |
|
old_logits = old_logits[:, :-1, :] |
|
loss, completion_length, mean_kl = grpo_compute_loss( |
|
old_logits, new_logits, input_ids, mask, beta, advantages, |
|
) |
|
|
|
scaled_loss = loss * scaling |
|
|
|
return scaled_loss, (loss.detach(), completion_length, mean_kl,) |
|
pass |
|
|
|
device =_new_hidden_states.device |
|
grad_inputs = torch.empty_like(_new_hidden_states) |
|
accumulated_loss = torch.zeros(1, device = device) |
|
accumulated_completion_length = torch.zeros(1, device = device) |
|
accumulated_mean_kl = torch.zeros(1, device = device) |
|
|
|
def accumulate_chunk(new_hidden_states_j, old_hidden_states_j, input_ids_j, mask_j, advantages_j, scaling): |
|
(chunk_grad_input,), (chunk_loss, (unscaled_loss, chunk_completion_length, chunk_mean_kl,)) = torch.func.grad_and_value( |
|
compute_loss, |
|
argnums = (0,), |
|
has_aux = True, |
|
)(new_hidden_states_j, old_hidden_states_j, input_ids_j, mask_j, advantages_j, scaling) |
|
accumulated_loss .add_(unscaled_loss) |
|
accumulated_completion_length.add_(chunk_completion_length) |
|
accumulated_mean_kl .add_(chunk_mean_kl) |
|
return chunk_grad_input |
|
pass |
|
|
|
accumulate_chunk = torch.compile( |
|
accumulate_chunk, |
|
fullgraph = True, |
|
options = torch_compile_options, |
|
) |
|
|
|
grad_inputs_chunks = torch.chunk(grad_inputs, chunks = n_chunks, dim = 0) |
|
new_hidden_states = torch.chunk(_new_hidden_states, chunks = n_chunks, dim = 0) |
|
old_hidden_states = torch.chunk(_old_hidden_states, chunks = n_chunks, dim = 0) |
|
input_ids = torch.chunk(_input_ids, chunks = n_chunks, dim = 0) |
|
mask = torch.chunk(_mask, chunks = n_chunks, dim = 0) |
|
advantages = torch.chunk(_advantages, chunks = n_chunks, dim = 0) |
|
|
|
|
|
scaling = scaler.get_scale() if scaler is not None else 1.0 |
|
|
|
|
|
mark_dynamic = lambda x: torch._dynamo.mark_dynamic(x, 1) |
|
|
|
for (grad_inputs_j, new_hidden_states_j, old_hidden_states_j, input_ids_j, mask_j, advantages_j,) in \ |
|
zip(grad_inputs_chunks, new_hidden_states, old_hidden_states, input_ids, mask, advantages): |
|
|
|
mark_dynamic(new_hidden_states_j) |
|
mark_dynamic(old_hidden_states_j) |
|
mark_dynamic(input_ids_j) |
|
mark_dynamic(mask_j) |
|
|
|
grad_inputs_j.copy_( |
|
accumulate_chunk(new_hidden_states_j, old_hidden_states_j, input_ids_j, mask_j, advantages_j, scaling) |
|
) |
|
pass |
|
|
|
grad_inputs .div_(n_chunks) |
|
accumulated_loss .div_(n_chunks) |
|
accumulated_completion_length.div_(n_chunks) |
|
accumulated_mean_kl .div_(n_chunks) |
|
ctx.save_for_backward(grad_inputs) |
|
|
|
return ( |
|
accumulated_loss, |
|
accumulated_completion_length, |
|
accumulated_mean_kl, |
|
) |
|
pass |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output, dcompletion_length, dmean_kl): |
|
(grad_input,) = ctx.saved_tensors |
|
return (grad_input, None, None, None, None, None, None, None, None,) |
|
pass |
|
|
|
def grpo_accumulated_loss( |
|
trainer, |
|
input_ids, |
|
logits_to_keep, |
|
completion_mask, |
|
advantages, |
|
n_chunks = -1, |
|
): |
|
|
|
bsz, qlen = input_ids.shape |
|
|
|
factors = [i for i in range(1, bsz + 1) if bsz % i == 0] |
|
if n_chunks == -1: n_chunks = bsz |
|
n_chunks = factors[min(np.searchsorted(factors, n_chunks), len(factors)-1)] |
|
|
|
mixed_dtype = torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16 |
|
os.environ["UNSLOTH_RETURN_HIDDEN_STATES"] = "1" |
|
|
|
completion_input_ids = input_ids[:, -logits_to_keep:] |
|
lm_head = trainer.model.get_output_embeddings().weight |
|
|
|
with torch.amp.autocast(device_type = "cuda", dtype = mixed_dtype): |
|
with torch.inference_mode(), trainer.accelerator.unwrap_model(trainer.model, keep_fp32_wrapper = False).disable_adapter(): |
|
old_hidden_states = trainer.model(input_ids = input_ids, logits_to_keep = logits_to_keep + 1).logits |
|
pass |
|
|
|
new_hidden_states = trainer.model(input_ids = input_ids, logits_to_keep = logits_to_keep + 1).logits |
|
|
|
loss, completion_length, mean_kl = UnslothEfficientGRPO.apply( |
|
new_hidden_states, old_hidden_states, lm_head, |
|
completion_input_ids, completion_mask, advantages, trainer.beta, |
|
trainer.accelerator.scaler, |
|
n_chunks, |
|
) |
|
return loss, completion_length, mean_kl |
|
|
|
|
|
new_logits = torch.matmul(new_hidden_states, lm_head.t()) |
|
new_logits = new_logits[:, :-1, :] |
|
old_logits = torch.matmul(old_hidden_states, lm_head.t()) |
|
old_logits = old_logits[:, :-1, :] |
|
loss, completion_length, mean_kl = grpo_compute_loss( |
|
old_logits, new_logits, completion_input_ids, completion_mask, trainer.beta, advantages, |
|
) |
|
return loss, completion_length, mean_kl |
|
pass |
|
|
|
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options) |
|
def grpo_compute_loss_slow(old_logits, new_logits, input_ids, mask, beta, advantages): |
|
|
|
old_logits = old_logits.to(torch.float32) |
|
new_logits = new_logits.to(torch.float32) |
|
input_ids = input_ids.unsqueeze(-1) |
|
|
|
|
|
old_x = torch.gather(old_logits, dim = -1, index = input_ids).squeeze(-1) |
|
new_x = torch.gather(new_logits, dim = -1, index = input_ids).squeeze(-1) |
|
old = old_x - torch.logsumexp(old_logits, dim = -1) |
|
new = new_x - torch.logsumexp(new_logits, dim = -1) |
|
|
|
|
|
kl_i = torch.exp(old - new) - (old - new) - 1.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loss_i = torch.exp(new - new.detach()) * advantages.unsqueeze(1) |
|
loss_i = -(loss_i - beta * kl_i) |
|
|
|
mask = mask.to(torch.float32) |
|
n_mask_per_reward = mask.sum(1) |
|
|
|
|
|
|
|
|
|
loss = (loss_i * mask).sum() / mask.sum() |
|
|
|
|
|
with torch.inference_mode(): |
|
completion_length = n_mask_per_reward.mean() |
|
mean_kl_per_reward = (kl_i * mask).sum(1) / n_mask_per_reward |
|
mean_kl = mean_kl_per_reward.mean() |
|
pass |
|
return loss, completion_length, mean_kl |
|
|
|
def vLLMSamplingParams(**kwargs): |
|
from vllm import SamplingParams |
|
sampling_params = SamplingParams(**kwargs) |
|
sampling_params._set_kwargs = kwargs |
|
return sampling_params |
|
@dataclass |
|
class UnslothGRPOConfig(GRPOConfig): |
|
""" |
|
|
|
Configuration class for the [`GRPOTrainer`]. |
|
|
|
Only the parameters specific to GRPO training are listed here. For details on other parameters, refer to the |
|
[`~transformers.TrainingArguments`] documentation. |
|
|
|
Using [`~transformers.HfArgumentParser`] we can turn this class into |
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the |
|
command line. |
|
|
|
Parameters: |
|
> Parameters that control the model and reference model |
|
|
|
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): |
|
Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model` |
|
argument of the [`GRPOTrainer`] is provided as a string. |
|
|
|
> Parameters that control the data preprocessing |
|
|
|
remove_unused_columns (`bool`, *optional*, defaults to `False`): |
|
Whether to only keep the column `"prompt"` in the dataset. If you use a custom reward function that |
|
requires any column other than `"prompts"` and `"completions"`, you should keep this to `False`. |
|
max_prompt_length (`int` or `None`, *optional*, defaults to `512`): |
|
Maximum length of the prompt. If the prompt is longer than this value, it will be truncated left. |
|
num_generations (`int` or `None`, *optional*, defaults to `8`): |
|
Number of generations per prompt to sample. The global batch size (num_processes * per_device_batch_size) |
|
must be divisible by this value. |
|
temperature (`float`, *optional*, defaults to `0.9`): |
|
Temperature for sampling. The higher the temperature, the more random the completions. |
|
max_completion_length (`int` or `None`, *optional*, defaults to `256`): |
|
Maximum length of the generated completion. |
|
ds3_gather_for_generation (`bool`, *optional*, defaults to `True`): |
|
This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation, |
|
improving generation speed. However, disabling this option allows training models that exceed the VRAM |
|
capacity of a single GPU, albeit at the cost of slower generation. Disabling this option is not compatible |
|
with vLLM generation. |
|
|
|
> Parameters that control generation acceleration powered by vLLM |
|
|
|
use_vllm (`bool`, *optional*, defaults to `False`): |
|
Whether to use vLLM for generating completions. If set to `True`, ensure that a GPU is kept unused for |
|
training, as vLLM will require one for generation. vLLM must be installed (`pip install vllm`). |
|
vllm_device (`str`, *optional*, defaults to `"auto"`): |
|
Device where vLLM generation will run, e.g. `"cuda:1"`. If set to `"auto"` (default), the system will |
|
automatically select the next available GPU after the last one used for training. This assumes that |
|
training has not already occupied all available GPUs. If only one device is available, the device will be |
|
shared between both training and vLLM. |
|
vllm_gpu_memory_utilization (`float`, *optional*, defaults to `0.9`): |
|
Ratio (between 0 and 1) of GPU memory to reserve for the model weights, activations, and KV cache on the |
|
device dedicated to generation powered by vLLM. Higher values will increase the KV cache size and thus |
|
improve the model's throughput. However, if the value is too high, it may cause out-of-memory (OOM) errors |
|
during initialization. |
|
vllm_dtype (`str`, *optional*, defaults to `"auto"`): |
|
Data type to use for vLLM generation. If set to `"auto"`, the data type will be automatically determined |
|
based on the model configuration. Find the supported values in the vLLM documentation. |
|
vllm_max_model_len (`int` or `None`, *optional*, defaults to `None`): |
|
If set, the `max_model_len` to use for vLLM. This could be useful when running with reduced |
|
`vllm_gpu_memory_utilization`, leading to a reduced KV cache size. If not set, vLLM will use the model |
|
context size, which might be much larger than the KV cache, leading to inefficiencies. |
|
|
|
> Parameters that control the training |
|
|
|
learning_rate (`float`, *optional*, defaults to `1e-6`): |
|
Initial learning rate for [`AdamW`] optimizer. The default value replaces that of |
|
[`~transformers.TrainingArguments`]. |
|
beta (`float`, *optional*, defaults to `0.04`): |
|
KL coefficient. |
|
reward_weights (`list[float]` or `None`, *optional*, defaults to `None`): |
|
Weights for each reward function. Must match the number of reward functions. If `None`, all rewards are |
|
weighted equally with weight `1.0`. |
|
sync_ref_model (`bool`, *optional*, defaults to `False`): |
|
Whether to synchronize the reference model with the active model every `ref_model_sync_steps` steps, using |
|
the `ref_model_mixup_alpha` parameter. This synchronization originites from the |
|
[TR-DPO](https://huggingface.co/papers/2404.09656) paper. |
|
ref_model_mixup_alpha (`float`, *optional*, defaults to `0.9`): |
|
α parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which controls the mix |
|
between the current policy and the previous reference policy during updates. The reference policy is |
|
updated according to the equation: `π_ref = α * π_θ + (1 - α) * π_ref_prev`. To use this parameter, you |
|
must set `sync_ref_model=True`. |
|
ref_model_sync_steps (`int`, *optional*, defaults to `64`): |
|
τ parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which determines how |
|
frequently the current policy is synchronized with the reference policy. To use this parameter, you must |
|
set `sync_ref_model=True`. |
|
|
|
> Parameters that control the logging |
|
|
|
log_completions (`bool`, *optional*, defaults to `False`): |
|
Whether to log the completions during training. |
|
|
|
""" |
|
vllm_sampling_params: Optional[Any] = field( |
|
default = None, |
|
metadata = {'help': 'vLLM SamplingParams'}, |
|
) |
|
unsloth_num_chunks : Optional[int] = field( |
|
default = -1, |
|
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, |
|
) |
|
def __init__( |
|
self, |
|
output_dir = None, |
|
overwrite_output_dir = None, |
|
do_train = False, |
|
do_eval = False, |
|
do_predict = False, |
|
eval_strategy = 'no', |
|
prediction_loss_only = False, |
|
per_device_train_batch_size = 4, |
|
per_device_eval_batch_size = 4, |
|
per_gpu_train_batch_size = None, |
|
per_gpu_eval_batch_size = None, |
|
gradient_accumulation_steps = 2, |
|
eval_accumulation_steps = 2, |
|
eval_delay = 0, |
|
torch_empty_cache_steps = 250, |
|
learning_rate = 5e-05, |
|
weight_decay = 0.01, |
|
adam_beta1 = 0.9, |
|
adam_beta2 = 0.999, |
|
adam_epsilon = 1e-08, |
|
max_grad_norm = 1.0, |
|
num_train_epochs = 3.0, |
|
max_steps = -1, |
|
lr_scheduler_type = 'linear', |
|
warmup_ratio = 0.1, |
|
warmup_steps = 0, |
|
log_level = 'passive', |
|
log_level_replica = 'warning', |
|
log_on_each_node = True, |
|
logging_dir = None, |
|
logging_strategy = 'steps', |
|
logging_first_step = False, |
|
logging_steps = 1, |
|
logging_nan_inf_filter = False, |
|
save_strategy = 'steps', |
|
save_steps = 500, |
|
save_total_limit = None, |
|
save_safetensors = True, |
|
save_on_each_node = False, |
|
save_only_model = False, |
|
restore_callback_states_from_checkpoint = False, |
|
no_cuda = False, |
|
use_cpu = False, |
|
use_mps_device = False, |
|
seed = 3407, |
|
data_seed = 3407, |
|
jit_mode_eval = False, |
|
use_ipex = False, |
|
bf16 = False, |
|
fp16 = False, |
|
fp16_opt_level = 'O1', |
|
half_precision_backend = 'auto', |
|
bf16_full_eval = False, |
|
fp16_full_eval = False, |
|
tf32 = None, |
|
local_rank = -1, |
|
ddp_backend = None, |
|
tpu_num_cores = None, |
|
tpu_metrics_debug = False, |
|
debug = '', |
|
dataloader_drop_last = False, |
|
eval_steps = None, |
|
dataloader_num_workers = 0, |
|
dataloader_prefetch_factor = None, |
|
past_index = -1, |
|
run_name = None, |
|
disable_tqdm = None, |
|
remove_unused_columns = False, |
|
label_names = None, |
|
load_best_model_at_end = False, |
|
metric_for_best_model = None, |
|
greater_is_better = None, |
|
ignore_data_skip = False, |
|
fsdp = '', |
|
fsdp_min_num_params = 0, |
|
fsdp_config = None, |
|
fsdp_transformer_layer_cls_to_wrap = None, |
|
accelerator_config = None, |
|
deepspeed = None, |
|
label_smoothing_factor = 0.0, |
|
optim = 'adamw_8bit', |
|
optim_args = None, |
|
adafactor = False, |
|
group_by_length = False, |
|
length_column_name = 'length', |
|
report_to = None, |
|
ddp_find_unused_parameters = None, |
|
ddp_bucket_cap_mb = None, |
|
ddp_broadcast_buffers = None, |
|
dataloader_pin_memory = True, |
|
dataloader_persistent_workers = False, |
|
skip_memory_metrics = True, |
|
use_legacy_prediction_loop = False, |
|
push_to_hub = False, |
|
resume_from_checkpoint = None, |
|
hub_model_id = None, |
|
hub_strategy = 'every_save', |
|
hub_token = None, |
|
hub_private_repo = None, |
|
hub_always_push = False, |
|
gradient_checkpointing = False, |
|
gradient_checkpointing_kwargs = None, |
|
include_inputs_for_metrics = False, |
|
eval_do_concat_batches = True, |
|
fp16_backend = 'auto', |
|
evaluation_strategy = None, |
|
push_to_hub_model_id = None, |
|
push_to_hub_organization = None, |
|
push_to_hub_token = None, |
|
mp_parameters = '', |
|
auto_find_batch_size = False, |
|
full_determinism = False, |
|
torchdynamo = None, |
|
ray_scope = 'last', |
|
ddp_timeout = 1800, |
|
torch_compile = False, |
|
torch_compile_backend = None, |
|
torch_compile_mode = None, |
|
dispatch_batches = None, |
|
split_batches = None, |
|
include_tokens_per_second = False, |
|
include_num_input_tokens_seen = False, |
|
neftune_noise_alpha = None, |
|
optim_target_modules = None, |
|
batch_eval_metrics = False, |
|
eval_on_start = False, |
|
use_liger_kernel = False, |
|
eval_use_gather_object = False, |
|
average_tokens_across_devices = False, |
|
model_init_kwargs = None, |
|
max_prompt_length = 512, |
|
num_generations = 8, |
|
temperature = 0.9, |
|
max_completion_length = 256, |
|
ds3_gather_for_generation = True, |
|
use_vllm = False, |
|
vllm_device = 'auto', |
|
vllm_gpu_memory_utilization = 0.9, |
|
vllm_dtype = 'auto', |
|
vllm_max_model_len = None, |
|
beta = 0.04, |
|
reward_weights = None, |
|
sync_ref_model = False, |
|
ref_model_mixup_alpha = 0.9, |
|
ref_model_sync_steps = 64, |
|
log_completions = False, |
|
vllm_sampling_params = None, |
|
unsloth_num_chunks = -1, |
|
**kwargs, |
|
): |
|
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') |
|
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') |
|
if output_dir is None and save_strategy == 'steps' and save_steps == 500: |
|
output_dir = 'unsloth_training_checkpoints' |
|
save_strategy = 'no' |
|
div = per_device_train_batch_size // num_generations |
|
if div * num_generations != per_device_train_batch_size: |
|
print('Unsloth: We now expect `per_device_train_batch_size` to be a multiple of `num_generations`.\nWe will change the batch size of ' + str(per_device_train_batch_size) + ' to the `num_generations` of ' + str(num_generations)) |
|
per_device_train_batch_size = num_generations |
|
|
|
super().__init__( |
|
output_dir = output_dir, |
|
overwrite_output_dir = overwrite_output_dir, |
|
do_train = do_train, |
|
do_eval = do_eval, |
|
do_predict = do_predict, |
|
eval_strategy = eval_strategy, |
|
prediction_loss_only = prediction_loss_only, |
|
per_device_train_batch_size = per_device_train_batch_size, |
|
per_device_eval_batch_size = per_device_eval_batch_size, |
|
per_gpu_train_batch_size = per_gpu_train_batch_size, |
|
per_gpu_eval_batch_size = per_gpu_eval_batch_size, |
|
gradient_accumulation_steps = gradient_accumulation_steps, |
|
eval_accumulation_steps = eval_accumulation_steps, |
|
eval_delay = eval_delay, |
|
torch_empty_cache_steps = torch_empty_cache_steps, |
|
learning_rate = learning_rate, |
|
weight_decay = weight_decay, |
|
adam_beta1 = adam_beta1, |
|
adam_beta2 = adam_beta2, |
|
adam_epsilon = adam_epsilon, |
|
max_grad_norm = max_grad_norm, |
|
num_train_epochs = num_train_epochs, |
|
max_steps = max_steps, |
|
lr_scheduler_type = lr_scheduler_type, |
|
warmup_ratio = warmup_ratio, |
|
warmup_steps = warmup_steps, |
|
log_level = log_level, |
|
log_level_replica = log_level_replica, |
|
log_on_each_node = log_on_each_node, |
|
logging_dir = logging_dir, |
|
logging_strategy = logging_strategy, |
|
logging_first_step = logging_first_step, |
|
logging_steps = logging_steps, |
|
logging_nan_inf_filter = logging_nan_inf_filter, |
|
save_strategy = save_strategy, |
|
save_steps = save_steps, |
|
save_total_limit = save_total_limit, |
|
save_safetensors = save_safetensors, |
|
save_on_each_node = save_on_each_node, |
|
save_only_model = save_only_model, |
|
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, |
|
no_cuda = no_cuda, |
|
use_cpu = use_cpu, |
|
use_mps_device = use_mps_device, |
|
seed = seed, |
|
data_seed = data_seed, |
|
jit_mode_eval = jit_mode_eval, |
|
use_ipex = use_ipex, |
|
bf16 = bf16, |
|
fp16 = fp16, |
|
fp16_opt_level = fp16_opt_level, |
|
half_precision_backend = half_precision_backend, |
|
bf16_full_eval = bf16_full_eval, |
|
fp16_full_eval = fp16_full_eval, |
|
tf32 = tf32, |
|
local_rank = local_rank, |
|
ddp_backend = ddp_backend, |
|
tpu_num_cores = tpu_num_cores, |
|
tpu_metrics_debug = tpu_metrics_debug, |
|
debug = debug, |
|
dataloader_drop_last = dataloader_drop_last, |
|
eval_steps = eval_steps, |
|
dataloader_num_workers = dataloader_num_workers, |
|
dataloader_prefetch_factor = dataloader_prefetch_factor, |
|
past_index = past_index, |
|
run_name = run_name, |
|
disable_tqdm = disable_tqdm, |
|
remove_unused_columns = remove_unused_columns, |
|
label_names = label_names, |
|
load_best_model_at_end = load_best_model_at_end, |
|
metric_for_best_model = metric_for_best_model, |
|
greater_is_better = greater_is_better, |
|
ignore_data_skip = ignore_data_skip, |
|
fsdp = fsdp, |
|
fsdp_min_num_params = fsdp_min_num_params, |
|
fsdp_config = fsdp_config, |
|
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, |
|
accelerator_config = accelerator_config, |
|
deepspeed = deepspeed, |
|
label_smoothing_factor = label_smoothing_factor, |
|
optim = optim, |
|
optim_args = optim_args, |
|
adafactor = adafactor, |
|
group_by_length = group_by_length, |
|
length_column_name = length_column_name, |
|
report_to = report_to, |
|
ddp_find_unused_parameters = ddp_find_unused_parameters, |
|
ddp_bucket_cap_mb = ddp_bucket_cap_mb, |
|
ddp_broadcast_buffers = ddp_broadcast_buffers, |
|
dataloader_pin_memory = dataloader_pin_memory, |
|
dataloader_persistent_workers = dataloader_persistent_workers, |
|
skip_memory_metrics = skip_memory_metrics, |
|
use_legacy_prediction_loop = use_legacy_prediction_loop, |
|
push_to_hub = push_to_hub, |
|
resume_from_checkpoint = resume_from_checkpoint, |
|
hub_model_id = hub_model_id, |
|
hub_strategy = hub_strategy, |
|
hub_token = hub_token, |
|
hub_private_repo = hub_private_repo, |
|
hub_always_push = hub_always_push, |
|
gradient_checkpointing = gradient_checkpointing, |
|
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, |
|
include_inputs_for_metrics = include_inputs_for_metrics, |
|
eval_do_concat_batches = eval_do_concat_batches, |
|
fp16_backend = fp16_backend, |
|
evaluation_strategy = evaluation_strategy, |
|
push_to_hub_model_id = push_to_hub_model_id, |
|
push_to_hub_organization = push_to_hub_organization, |
|
push_to_hub_token = push_to_hub_token, |
|
mp_parameters = mp_parameters, |
|
auto_find_batch_size = auto_find_batch_size, |
|
full_determinism = full_determinism, |
|
torchdynamo = torchdynamo, |
|
ray_scope = ray_scope, |
|
ddp_timeout = ddp_timeout, |
|
torch_compile = torch_compile, |
|
torch_compile_backend = torch_compile_backend, |
|
torch_compile_mode = torch_compile_mode, |
|
dispatch_batches = dispatch_batches, |
|
split_batches = split_batches, |
|
include_tokens_per_second = include_tokens_per_second, |
|
include_num_input_tokens_seen = include_num_input_tokens_seen, |
|
neftune_noise_alpha = neftune_noise_alpha, |
|
optim_target_modules = optim_target_modules, |
|
batch_eval_metrics = batch_eval_metrics, |
|
eval_on_start = eval_on_start, |
|
use_liger_kernel = use_liger_kernel, |
|
eval_use_gather_object = eval_use_gather_object, |
|
average_tokens_across_devices = average_tokens_across_devices, |
|
model_init_kwargs = model_init_kwargs, |
|
max_prompt_length = max_prompt_length, |
|
num_generations = num_generations, |
|
temperature = temperature, |
|
max_completion_length = max_completion_length, |
|
ds3_gather_for_generation = ds3_gather_for_generation, |
|
use_vllm = use_vllm, |
|
vllm_device = vllm_device, |
|
vllm_gpu_memory_utilization = vllm_gpu_memory_utilization, |
|
vllm_dtype = vllm_dtype, |
|
vllm_max_model_len = vllm_max_model_len, |
|
beta = beta, |
|
reward_weights = reward_weights, |
|
sync_ref_model = sync_ref_model, |
|
ref_model_mixup_alpha = ref_model_mixup_alpha, |
|
ref_model_sync_steps = ref_model_sync_steps, |
|
log_completions = log_completions,**kwargs) |
|
self.vllm_sampling_params = vllm_sampling_params |
|
self.unsloth_num_chunks = unsloth_num_chunks |
|
pass |
|
|
|
class _UnslothGRPOTrainer(Trainer): |
|
"""""" |
|
|
|
_tag_names = ["trl", "grpo"] |
|
|
|
def __init__( |
|
self, |
|
model: Union[str, PreTrainedModel], |
|
reward_funcs: Union[RewardFunc, list[RewardFunc]], |
|
args: GRPOConfig = None, |
|
train_dataset: Optional[Union[Dataset, IterableDataset]] = None, |
|
eval_dataset: Optional[Union[Dataset, IterableDataset, dict[str, Union[Dataset, IterableDataset]]]] = None, |
|
processing_class: Optional[PreTrainedTokenizerBase] = None, |
|
reward_processing_classes: Optional[Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]] = None, |
|
callbacks: Optional[list[TrainerCallback]] = None, |
|
optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None), |
|
peft_config: Optional["PeftConfig"] = None, |
|
): |
|
|
|
if hasattr(model, 'vllm_engine') and hasattr(args, 'use_vllm') and (getattr(args, 'use_vllm', False) == False): args.use_vllm = True |
|
|
|
if args is None: |
|
model_name = model if isinstance(model, str) else model.config._name_or_path |
|
model_name = model_name.split("/")[-1] |
|
args = GRPOConfig(f"{model_name}-GRPO") |
|
|
|
|
|
|
|
model_init_kwargs = args.model_init_kwargs or {} |
|
if isinstance(model, str): |
|
model_id = model |
|
torch_dtype = model_init_kwargs.get("torch_dtype") |
|
if isinstance(torch_dtype, torch.dtype) or torch_dtype == "auto" or torch_dtype is None: |
|
pass |
|
elif isinstance(torch_dtype, str): |
|
torch_dtype = getattr(torch, torch_dtype) |
|
model_init_kwargs["torch_dtype"] = torch_dtype |
|
else: |
|
raise ValueError( |
|
"Invalid `torch_dtype` passed to `GRPOConfig`. Expected either 'auto' or a string representing " |
|
f"a `torch.dtype` (e.g., 'float32'), but got {torch_dtype}." |
|
) |
|
|
|
model_init_kwargs["use_cache"] = ( |
|
False if args.gradient_checkpointing else model_init_kwargs.get("use_cache") |
|
) |
|
model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs) |
|
else: |
|
model_id = model.config._name_or_path |
|
if args.model_init_kwargs is not None: |
|
raise ValueError( |
|
"You passed `model_init_kwargs` to the `GRPOConfig`, but your model is already instantiated. " |
|
"This argument can only be used when the `model` argument is a string." |
|
) |
|
|
|
if False: |
|
model = model |
|
|
|
|
|
if is_deepspeed_zero3_enabled(): |
|
self.ref_model = AutoModelForCausalLM.from_pretrained(model_id, **model_init_kwargs) |
|
elif not is_peft_model(model): |
|
|
|
self.ref_model = create_reference_model(model) |
|
else: |
|
|
|
|
|
self.ref_model = None |
|
|
|
|
|
if processing_class is None: |
|
processing_class = AutoTokenizer.from_pretrained(model.config._name_or_path, padding_side="left") |
|
|
|
|
|
if not isinstance(reward_funcs, list): |
|
reward_funcs = [reward_funcs] |
|
for i, reward_func in enumerate(reward_funcs): |
|
if isinstance(reward_func, str): |
|
reward_funcs[i] = AutoModelForSequenceClassification.from_pretrained( |
|
reward_func, num_labels=1, **model_init_kwargs |
|
) |
|
self.reward_funcs = reward_funcs |
|
|
|
|
|
if args.reward_weights is not None: |
|
if len(args.reward_weights) != len(reward_funcs): |
|
raise ValueError( |
|
f"Number of reward weights ({len(args.reward_weights)}) must match number of reward " |
|
f"functions ({len(reward_funcs)})" |
|
) |
|
self.reward_weights = torch.tensor(args.reward_weights, dtype=torch.float32) |
|
else: |
|
self.reward_weights = torch.ones(len(reward_funcs), dtype=torch.float32) |
|
|
|
|
|
if reward_processing_classes is None: |
|
reward_processing_classes = [None] * len(reward_funcs) |
|
elif not isinstance(reward_processing_classes, list): |
|
reward_processing_classes = [reward_processing_classes] |
|
else: |
|
if len(reward_processing_classes) != len(reward_funcs): |
|
raise ValueError("The number of reward processing classes must match the number of reward functions.") |
|
|
|
for i, (reward_processing_class, reward_func) in enumerate(zip(reward_processing_classes, reward_funcs)): |
|
if isinstance(reward_func, PreTrainedModel): |
|
if reward_processing_class is None: |
|
reward_processing_class = AutoTokenizer.from_pretrained(reward_func.config._name_or_path) |
|
if reward_processing_class.pad_token_id is None: |
|
reward_processing_class.pad_token = reward_processing_class.eos_token |
|
|
|
|
|
reward_func.config.pad_token_id = reward_processing_class.pad_token_id |
|
reward_processing_classes[i] = reward_processing_class |
|
self.reward_processing_classes = reward_processing_classes |
|
|
|
|
|
def data_collator(features): |
|
return features |
|
|
|
|
|
self.max_prompt_length = args.max_prompt_length |
|
self.max_completion_length = args.max_completion_length |
|
self.num_generations = args.num_generations |
|
self.use_vllm = args.use_vllm |
|
|
|
self.beta = args.beta |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.warnings_issued["estimate_tokens"] = True |
|
|
|
|
|
self._metrics = defaultdict(list) |
|
self.log_completions = args.log_completions |
|
|
|
super().__init__( |
|
model=model, |
|
args=args, |
|
data_collator=data_collator, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
processing_class=processing_class, |
|
callbacks=callbacks, |
|
optimizers=optimizers, |
|
) |
|
|
|
|
|
num_processes = self.accelerator.num_processes |
|
global_batch_size = args.per_device_train_batch_size * num_processes |
|
possible_values = [n_gen for n_gen in range(2, global_batch_size + 1) if (global_batch_size) % n_gen == 0] |
|
if self.num_generations not in possible_values: |
|
raise ValueError( |
|
f"The global train batch size ({num_processes} x {args.per_device_train_batch_size}) must be evenly " |
|
f"divisible by the number of generations per prompt ({self.num_generations}). Given the current train " |
|
f"batch size, the valid values for the number of generations are: {possible_values}." |
|
) |
|
if self.args.eval_strategy != "no": |
|
global_batch_size = args.per_device_eval_batch_size * num_processes |
|
possible_values = [n_gen for n_gen in range(2, global_batch_size + 1) if (global_batch_size) % n_gen == 0] |
|
if self.num_generations not in possible_values: |
|
raise ValueError( |
|
f"The global eval batch size ({num_processes} x {args.per_device_eval_batch_size}) must be evenly " |
|
f"divisible by the number of generations per prompt ({self.num_generations}). Given the current " |
|
f"eval batch size, the valid values for the number of generations are: {possible_values}." |
|
) |
|
|
|
|
|
|
|
|
|
set_seed(args.seed, device_specific=True) |
|
|
|
if self.use_vllm: |
|
self.llm = model.vllm_engine; self._last_loaded_step = 0; self.sampling_params = SamplingParams( |
|
temperature=args.temperature, |
|
max_tokens=self.max_completion_length,**getattr(getattr(args, 'vllm_sampling_params', vLLMSamplingParams()), '_set_kwargs', {}),) |
|
else: |
|
self.generation_config = GenerationConfig( |
|
max_new_tokens=self.max_completion_length, |
|
do_sample=True, |
|
temperature=args.temperature, |
|
pad_token_id=processing_class.pad_token_id, |
|
) |
|
|
|
|
|
|
|
|
|
self.model_accepts_loss_kwargs = False |
|
|
|
|
|
self.model.add_model_tags(self._tag_names) |
|
|
|
if self.ref_model is not None: |
|
if self.is_deepspeed_enabled: |
|
self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator) |
|
else: |
|
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) |
|
|
|
if args.sync_ref_model: |
|
self.add_callback(SyncRefModelCallback(ref_model=self.ref_model, accelerator=self.accelerator)) |
|
|
|
for i, reward_func in enumerate(self.reward_funcs): |
|
if isinstance(reward_func, PreTrainedModel): |
|
self.reward_funcs[i] = self.accelerator.prepare_model(reward_func, evaluation_mode=True) |
|
|
|
def _set_signature_columns_if_needed(self): |
|
|
|
|
|
|
|
|
|
if self._signature_columns is None: |
|
self._signature_columns = ["prompt"] |
|
|
|
def _get_train_sampler(self) -> Sampler: |
|
|
|
|
|
|
|
|
|
return RepeatRandomSampler(self.train_dataset, self.num_generations, seed=self.args.seed) |
|
|
|
def _get_eval_sampler(self, eval_dataset) -> Sampler: |
|
|
|
|
|
|
|
|
|
return RepeatRandomSampler(eval_dataset, self.num_generations, seed=self.args.seed) |
|
|
|
|
|
def _get_per_token_logps(self, model, input_ids, attention_mask, logits_to_keep): |
|
if os.environ.get('UNSLOTH_USE_NEW_MODEL', '0') == '0': |
|
return None |
|
|
|
if not hasattr(self, '_autocast_dtype'): |
|
self._autocast_dtype = torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16 |
|
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': self._autocast_dtype = torch.float32 |
|
with torch.amp.autocast(device_type = 'cuda', dtype = self._autocast_dtype): |
|
|
|
logits = model(input_ids=input_ids, attention_mask=attention_mask, logits_to_keep=logits_to_keep + 1).logits |
|
logits = logits[:, :-1, :] |
|
|
|
input_ids = input_ids[:, -logits_to_keep:] |
|
|
|
|
|
logits = logits[:, -logits_to_keep:] |
|
return logits |
|
|
|
pass |
|
|
|
def _move_model_to_vllm(self, *args, **kwargs): return None |
|
|
|
def _prepare_inputs(self, inputs: dict[str, Union[torch.Tensor, Any]]) -> dict[str, Union[torch.Tensor, Any]]: |
|
device = self.accelerator.device |
|
prompts = [x["prompt"] for x in inputs] |
|
prompts_text = [maybe_apply_chat_template(example, self.processing_class)["prompt"] for example in inputs] |
|
prompt_inputs = self.processing_class( |
|
prompts_text, return_tensors="pt", padding=True, padding_side="left", add_special_tokens=False |
|
) |
|
prompt_inputs = super()._prepare_inputs(prompt_inputs) |
|
prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"] |
|
|
|
if self.max_prompt_length is not None: |
|
prompt_ids = prompt_ids[:, -self.max_prompt_length :] |
|
prompt_mask = prompt_mask[:, -self.max_prompt_length :] |
|
|
|
|
|
if self.args.use_vllm: |
|
|
|
if self.state.global_step != self._last_loaded_step: |
|
self._move_model_to_vllm() |
|
self._last_loaded_step = self.state.global_step |
|
|
|
|
|
all_prompts_text = gather_object(prompts_text) |
|
if self.accelerator.is_main_process: |
|
outputs = self.llm.generate(all_prompts_text, sampling_params=self.sampling_params, use_tqdm=False, lora_request = self.model.load_lora('grpo_trainer_lora_model', load_tensors = True)) |
|
completion_ids = [out.token_ids for completions in outputs for out in completions.outputs] |
|
else: |
|
completion_ids = [None] * len(all_prompts_text) |
|
|
|
|
|
completion_ids = broadcast_object_list(completion_ids, from_process=0) |
|
process_slice = slice( |
|
self.accelerator.process_index * len(prompts), |
|
(self.accelerator.process_index + 1) * len(prompts), |
|
) |
|
completion_ids = completion_ids[process_slice] |
|
|
|
|
|
completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids] |
|
completion_ids = pad(completion_ids, padding_value=self.processing_class.pad_token_id) |
|
prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1) |
|
else: |
|
|
|
with unwrap_model_for_generation(self.model, self.accelerator) as unwrapped_model: |
|
prompt_completion_ids = unwrapped_model.generate( |
|
prompt_ids, attention_mask=prompt_mask, generation_config=self.generation_config |
|
) |
|
|
|
|
|
prompt_length = prompt_ids.size(1) |
|
prompt_ids = prompt_completion_ids[:, :prompt_length] |
|
completion_ids = prompt_completion_ids[:, prompt_length:] |
|
|
|
|
|
is_eos = completion_ids == self.processing_class.eos_token_id |
|
eos_idx = torch.full((is_eos.size(0),), is_eos.size(1), dtype=torch.long, device=device) |
|
eos_idx[is_eos.any(dim=1)] = is_eos.int().argmax(dim=1)[is_eos.any(dim=1)] |
|
sequence_indices = torch.arange(is_eos.size(1), device=device).expand(is_eos.size(0), -1) |
|
completion_mask = (sequence_indices <= eos_idx.unsqueeze(1)).int() |
|
|
|
|
|
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) |
|
|
|
logits_to_keep = completion_ids.size(1) |
|
|
|
with torch.inference_mode(), torch.amp.autocast(device_type = 'cuda', dtype = torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16) if not torch.is_autocast_enabled('cuda') else nullcontext(): |
|
if self.ref_model is not None: |
|
ref_per_token_logps = self._get_per_token_logps( |
|
self.ref_model, prompt_completion_ids, attention_mask, logits_to_keep |
|
) |
|
else: |
|
with self.accelerator.unwrap_model(self.model, keep_fp32_wrapper = False).disable_adapter(): |
|
ref_per_token_logps = self._get_per_token_logps( |
|
self.model, prompt_completion_ids, attention_mask, logits_to_keep |
|
) |
|
|
|
|
|
completions_text = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True) |
|
if is_conversational(inputs[0]): |
|
completions = [] |
|
for prompt, completion in zip(prompts, completions_text): |
|
bootstrap = prompt.pop()["content"] if prompt[-1]["role"] == "assistant" else "" |
|
completions.append([{"role": "assistant", "content": bootstrap + completion}]) |
|
else: |
|
completions = completions_text |
|
|
|
rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device) |
|
for i, (reward_func, reward_processing_class) in enumerate( |
|
zip(self.reward_funcs, self.reward_processing_classes) |
|
): |
|
if isinstance(reward_func, nn.Module): |
|
if is_conversational(inputs[0]): |
|
messages = [{"messages": p + c} for p, c in zip(prompts, completions)] |
|
texts = [apply_chat_template(x, reward_processing_class)["text"] for x in messages] |
|
else: |
|
texts = [p + c for p, c in zip(prompts, completions)] |
|
reward_inputs = reward_processing_class( |
|
texts, return_tensors="pt", padding=True, padding_side="right", add_special_tokens=False |
|
) |
|
reward_inputs = super()._prepare_inputs(reward_inputs) |
|
with torch.inference_mode(), torch.amp.autocast(device_type = 'cuda', dtype = torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16) if not torch.is_autocast_enabled('cuda') else nullcontext(): |
|
rewards_per_func[:, i] = reward_func(**reward_inputs).logits[:, 0] |
|
else: |
|
|
|
keys = [key for key in inputs[0] if key not in ["prompt", "completion"]] |
|
reward_kwargs = {key: [example[key] for example in inputs] for key in keys} |
|
output_reward_func = reward_func(prompts=prompts, completions=completions, **reward_kwargs) |
|
rewards_per_func[:, i] = torch.tensor(output_reward_func, dtype=torch.float32, device=device) |
|
|
|
|
|
|
|
rewards_per_func = gather(rewards_per_func) |
|
|
|
|
|
rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).sum(dim=1) |
|
|
|
|
|
mean_grouped_rewards = rewards.view(-1, self.num_generations).mean(dim=1) |
|
std_grouped_rewards = rewards.view(-1, self.num_generations).std(dim=1) |
|
|
|
|
|
mean_grouped_rewards = mean_grouped_rewards.repeat_interleave(self.num_generations, dim=0) |
|
std_grouped_rewards = std_grouped_rewards.repeat_interleave(self.num_generations, dim=0) |
|
advantages = (rewards - mean_grouped_rewards) / (std_grouped_rewards + 1e-4) |
|
|
|
|
|
process_slice = slice( |
|
self.accelerator.process_index * len(prompts), |
|
(self.accelerator.process_index + 1) * len(prompts), |
|
) |
|
advantages = advantages[process_slice] |
|
|
|
|
|
reward_per_func = rewards_per_func.mean(0) |
|
for i, reward_func in enumerate(self.reward_funcs): |
|
if isinstance(reward_func, nn.Module): |
|
reward_func_name = reward_func.config._name_or_path.split("/")[-1] |
|
else: |
|
reward_func_name = reward_func.__name__ |
|
self._metrics[f"rewards/{reward_func_name}"].append(reward_per_func[i].item()) |
|
|
|
self._metrics["reward"].append(rewards.mean().item()) |
|
self._metrics["reward_std"].append(std_grouped_rewards.mean().item()) |
|
|
|
if ( |
|
self.log_completions |
|
and self.state.global_step % self.args.logging_steps == 0 |
|
and "wandb" in self.args.report_to |
|
): |
|
import pandas as pd |
|
|
|
|
|
table = { |
|
"step": [str(self.state.global_step)] * len(rewards), |
|
"prompt": gather_object(prompts_text), |
|
"completion": gather_object(completions_text), |
|
"reward": rewards.tolist(), |
|
} |
|
df = pd.DataFrame(table) |
|
|
|
if wandb.run is not None and self.accelerator.is_main_process: |
|
wandb.log({"completions": wandb.Table(dataframe=df)}) |
|
|
|
return { |
|
"prompt_ids": prompt_ids, |
|
"prompt_mask": prompt_mask, |
|
"completion_ids": completion_ids, |
|
"completion_mask": completion_mask, |
|
"ref_per_token_logps": ref_per_token_logps, |
|
"advantages": advantages, |
|
} |
|
|
|
def compute_loss(self, model, inputs, return_outputs = False, num_items_in_batch = None): |
|
if return_outputs: |
|
raise ValueError("The GRPOTrainer does not support returning outputs") |
|
|
|
|
|
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"] |
|
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"] |
|
input_ids = torch.cat([prompt_ids, completion_ids], dim=1) |
|
bsz, qlen = input_ids.shape |
|
|
|
attention_mask = None |
|
logits_to_keep = completion_ids.size(1) |
|
_input_ids = input_ids |
|
_logits_to_keep = logits_to_keep |
|
per_token_logps = self._get_per_token_logps(model, input_ids, attention_mask, logits_to_keep) |
|
|
|
|
|
ref_per_token_logps = inputs["ref_per_token_logps"] |
|
|
|
|
|
|
|
advantages = inputs["advantages"] |
|
|
|
|
|
|
|
input_ids = input_ids[:, -logits_to_keep:] |
|
if per_token_logps is not None: |
|
loss, completion_length, mean_kl = grpo_compute_loss_slow( |
|
ref_per_token_logps, per_token_logps, input_ids, completion_mask, self.beta, advantages, |
|
) |
|
else: |
|
loss, completion_length, mean_kl = grpo_accumulated_loss( |
|
self, _input_ids, logits_to_keep, completion_mask, advantages, |
|
n_chunks = self.args.unsloth_num_chunks, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if "train" in self._metrics: |
|
mode = "eval" if self.control.should_evaluate else "train" |
|
self._metrics[mode]["completion_length"].append(completion_length.item()) |
|
self._metrics[mode]["kl"].append(mean_kl.item()) |
|
else: |
|
self._metrics["completion_length"].append(completion_length.item()) |
|
self._metrics["kl"].append(mean_kl.item()) |
|
return loss |
|
|
|
def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys: Optional[list[str]] = None): |
|
inputs = self._prepare_inputs(inputs) |
|
with torch.no_grad(): |
|
with self.compute_loss_context_manager(): |
|
loss = self.compute_loss(model, inputs) |
|
loss = loss.mean().detach() |
|
return loss, None, None |
|
|
|
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None: |
|
metrics = {key: sum(val) / len(val) for key, val in self._metrics.items()} |
|
|
|
|
|
|
|
if next(iter(logs.keys())).startswith("eval_"): |
|
metrics = {f"eval_{key}": val for key, val in metrics.items()} |
|
|
|
logs = {**logs, **metrics} |
|
if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"): |
|
super().log(logs, start_time) |
|
else: |
|
super().log(logs) |
|
self._metrics.clear() |
|
|
|
def create_model_card( |
|
self, |
|
model_name: Optional[str] = None, |
|
dataset_name: Optional[str] = None, |
|
tags: Union[str, list[str], None] = None, |
|
): |
|
""" |
|
Creates a draft of a model card using the information available to the `Trainer`. |
|
|
|
Args: |
|
model_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the model. |
|
dataset_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the dataset used for training. |
|
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): |
|
Tags to be associated with the model card. |
|
""" |
|
if not self.is_world_process_zero(): |
|
return |
|
|
|
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): |
|
base_model = self.model.config._name_or_path |
|
else: |
|
base_model = None |
|
|
|
tags = tags or [] |
|
if isinstance(tags, str): |
|
tags = [tags] |
|
|
|
if hasattr(self.model.config, "unsloth_version"): |
|
tags.append("unsloth") |
|
|
|
citation = textwrap.dedent( |
|
"""\ |
|
@article{zhihong2024deepseekmath, |
|
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, |
|
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, |
|
year = 2024, |
|
eprint = {arXiv:2402.03300}, |
|
} |
|
""" |
|
) |
|
|
|
model_card = generate_model_card( |
|
base_model=base_model, |
|
model_name=model_name, |
|
hub_model_id=self.hub_model_id, |
|
dataset_name=dataset_name, |
|
tags=tags, |
|
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, |
|
comet_url=get_comet_experiment_url(), |
|
trainer_name="GRPO", |
|
trainer_citation=citation, |
|
paper_title="DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models", |
|
paper_id="2402.03300", |
|
) |
|
|
|
model_card.save(os.path.join(self.args.output_dir, "README.md")) |
|
class UnslothGRPOTrainer(_UnslothGRPOTrainer): |
|
""" |
|
|
|
Trainer for the Group Relative Policy Optimization (GRPO) method. This algorithm was initially proposed in the |
|
paper [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). |
|
|
|
Example: |
|
|
|
```python |
|
from datasets import load_dataset |
|
from trl import GRPOTrainer |
|
|
|
dataset = load_dataset("trl-lib/tldr", split="train") |
|
|
|
def reward_func(completions, **kwargs): |
|
# Dummy reward function that rewards completions with more unique letters. |
|
return [float(len(set(completion))) for completion in completions] |
|
|
|
trainer = GRPOTrainer( |
|
model="Qwen/Qwen2-0.5B-Instruct", |
|
reward_funcs=reward_func, |
|
train_dataset=dataset, |
|
) |
|
|
|
trainer.train() |
|
``` |
|
|
|
Args: |
|
model (`Union[str, PreTrainedModel]`): |
|
Model to be trained. Can be either: |
|
|
|
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or |
|
a path to a *directory* containing model weights saved using |
|
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is |
|
loaded using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keywork arguments |
|
in `args.model_init_kwargs`. |
|
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported. |
|
reward_funcs (`Union[RewardFunc, list[RewardFunc]]`): |
|
Reward functions to be used for computing the rewards. To compute the rewards, we call all the reward |
|
functions with the prompts and completions and sum the rewards. Can be either: |
|
|
|
- A single reward function, such as: |
|
- A string: The *model ID* of a pretrained model hosted inside a model repo on huggingface.co, or a |
|
path to a *directory* containing model weights saved using |
|
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded |
|
using [`~transformers.AutoModelForSequenceClassification.from_pretrained`] with `num_labels=1` and the |
|
keyword arguments in `args.model_init_kwargs`. |
|
- A [`~transformers.PreTrainedModel`] object: Only sequence classification models are supported. |
|
- A custom reward function: The function is provided with the prompts and the generated completions, |
|
plus any additional columns in the dataset. It should return a list of rewards. For more details, see |
|
[Using a custom reward function](#using-a-custom-reward-function). |
|
- A list of reward functions, where each item can independently be any of the above types. Mixing different |
|
types within the list (e.g., a string model ID and a custom reward function) is allowed. |
|
args ([`GRPOConfig`], *optional*, defaults to `None`): |
|
Configuration for this trainer. If `None`, a default configuration is used. |
|
train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]): |
|
Dataset to use for training. It must include a column `"prompt"`. Any additional columns in the dataset is |
|
ignored. The format of the samples can be either: |
|
|
|
- [Standard](dataset_formats#standard): Each sample contains plain text. |
|
- [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role |
|
and content). |
|
eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`): |
|
Dataset to use for evaluation. It must meet the same requirements as `train_dataset`. |
|
processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*, defaults to `None`): |
|
Processing class used to process the data. The padding side must be set to "left". If `None`, the |
|
processing class is loaded from the model's name with [`~transformers.AutoTokenizer.from_pretrained`]. |
|
reward_processing_classes (`Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]`, *optional*, defaults to `None`): |
|
Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either: |
|
|
|
- A single processing class: Used when `reward_funcs` contains only one reward function. |
|
- A list of processing classes: Must match the order and length of the reward functions in `reward_funcs`. |
|
If set to `None`, or if an element of the list corresponding to a [`~transformers.PreTrainedModel`] is |
|
`None`, the tokenizer for the model is automatically loaded using [`~transformers.AutoTokenizer.from_pretrained`]. |
|
For elements in `reward_funcs` that are custom reward functions (not [`~transformers.PreTrainedModel`]), |
|
the corresponding entries in `reward_processing_classes` are ignored. |
|
callbacks (list of [`~transformers.TrainerCallback`], *optional*, defaults to `None`): |
|
List of callbacks to customize the training loop. Will add those to the list of default callbacks |
|
detailed in [here](https://huggingface.co/docs/transformers/main_classes/callback). |
|
|
|
If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`] |
|
method. |
|
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`): |
|
A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your |
|
model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`. |
|
peft_config ([`~peft.PeftConfig`], *optional*, defaults to `None`): |
|
PEFT configuration used to wrap the model. If `None`, the model is not wrapped. |
|
|
|
""" |
|
def __init__( |
|
self, |
|
model, |
|
reward_funcs, |
|
args = None, |
|
train_dataset = None, |
|
eval_dataset = None, |
|
processing_class = None, |
|
reward_processing_classes = None, |
|
callbacks = None, |
|
peft_config = None, |
|
**kwargs |
|
): |
|
if args is None: args = UnslothGRPOConfig() |
|
use_bf16 = getattr(args, 'bf16', False) |
|
use_fp16 = getattr(args, 'fp16', False) |
|
force_float32 = False |
|
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': |
|
print('Unsloth: Switching to float32 training since model cannot work with float16') |
|
force_float32 = True |
|
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') |
|
dtype = getattr(model.config, 'torch_dtype', None) |
|
if dtype is None: dtype = model.get_input_embeddings().dtype |
|
from unsloth_zoo.utils import _get_dtype |
|
dtype = _get_dtype(dtype) |
|
float16 = dtype == torch.float16 |
|
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') |
|
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') |
|
if force_float32: |
|
args.fp16 = False |
|
args.bf16 = False |
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' |
|
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': |
|
args.fp16 = float16 |
|
args.bf16 = not float16 |
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' |
|
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': |
|
args.eval_strategy = 'steps' |
|
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 |
|
ga_steps = getattr(args, 'gradient_accumulation_steps', None) |
|
if ga_steps is not None and ga_steps > 1: |
|
from transformers import __version__ as transformers_version |
|
if Version(transformers_version) <= Version('4.45.2'): |
|
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' |
|
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') |
|
if getattr(args, 'eval_strategy', 'no') != 'no': |
|
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) |
|
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size |
|
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps |
|
fp16_full_eval = getattr(args, 'fp16_full_eval', False) |
|
bf16_full_eval = getattr(args, 'bf16_full_eval', False) |
|
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True |
|
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False |
|
if force_float32: |
|
args.bf16_full_eval = False |
|
args.fp16_full_eval = False |
|
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': |
|
args.bf16_full_eval = True |
|
args.fp16_full_eval = False |
|
elif not bf16_full_eval and not fp16_full_eval: |
|
args.bf16_full_eval = args.bf16 |
|
args.fp16_full_eval = args.fp16 |
|
_output_logits = False |
|
if locals().get('compute_metrics', None) is not None: _output_logits = True |
|
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True |
|
if _output_logits: |
|
os.environ['UNSLOTH_RETURN_LOGITS'] = '1' |
|
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): |
|
pass |
|
else: |
|
model_max_seq_length = getattr(model, 'max_seq_length', None) |
|
args_max_seq_length = getattr(args, 'max_seq_length', None) |
|
if args_max_seq_length is None and model_max_seq_length is not None: |
|
max_seq_length = model.max_seq_length |
|
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length |
|
if model is not None and hasattr(model, 'for_training'): |
|
model.for_training() |
|
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' |
|
if 'processing_class' in locals(): |
|
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' |
|
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' |
|
other_metrics = [] |
|
if not isinstance(reward_funcs, list): _reward_funcs = [reward_funcs] |
|
else: _reward_funcs = reward_funcs |
|
for reward_func in _reward_funcs: |
|
try: |
|
reward_func_name = reward_func.__name__ |
|
other_metrics.append(f'rewards/{reward_func_name}') |
|
except: pass |
|
|
|
from unsloth_zoo.logging_utils import PatchRLStatistics |
|
PatchRLStatistics('grpo_trainer', other_metrics) |
|
|
|
super().__init__( |
|
model = model, |
|
reward_funcs = reward_funcs, |
|
args = args, |
|
train_dataset = train_dataset, |
|
eval_dataset = eval_dataset, |
|
processing_class = processing_class, |
|
reward_processing_classes = reward_processing_classes, |
|
callbacks = callbacks, |
|
peft_config = peft_config,**kwargs) |
|
if hasattr(self, 'neftune_hook_handle'): |
|
self.neftune_hook_handle.remove() |
|
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle |
|
if getattr(args, 'neftune_noise_alpha', None) is not None: |
|
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha |
|
pass |
|
|
|
pass |
|
|