kevinwang676's picture
Upload folder using huggingface_hub
d5eed08 verified
"""
2025.3.12
2025.3.14
4.48.3
0.15.2
__UNSLOTH_VERSIONING__
"""
from torch import Tensor
import torch
import torch.nn as nn
from torch.nn import functional as F
from trl.trainer.sft_trainer import (Any, AutoModelForCausalLM, AutoTokenizer, BaseImageProcessor, Callable, ConstantLengthDataset, DataCollator, DataCollatorForLanguageModeling, Dataset, EvalPrediction, FeatureExtractionMixin, IterableDataset, Optional, PeftConfig, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SFTConfig, SFTTrainer, Trainer, TrainerCallback, TrainingArguments, Type, Union, dataclasses, defaultdict, deprecate_kwarg, generate_model_card, get_comet_experiment_url, get_peft_model, is_liger_kernel_available, is_peft_available, is_wandb_available, nn, os, pack_examples, peft, peft_module_casting_to_bf16, prepare_model_for_kbit_training, torch, transformers, version, wandb, warnings, Callable, ConstantLengthDataset, DataCollator, DataCollatorForLanguageModeling, Dataset, IterableDataset, Optional, Union, os, pack_examples, transformers, os)
import os
from typing import *
from dataclasses import dataclass, field
from packaging.version import Version
import torch
import numpy as np
from contextlib import nullcontext
from torch.nn import functional as F
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling
torch_compile_options = {
"epilogue_fusion" : True,
"max_autotune" : False,
"shape_padding" : True,
"trace.enabled" : False,
"triton.cudagraphs" : False,
}
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
def selective_log_softmax(logits, index):
logits = logits.to(torch.float32)
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1)
# loop to reduce peak mem consumption
# logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
logsumexp_values = torch.logsumexp(logits, dim = -1)
per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x)
return per_token_logps
@dataclass
class UnslothSFTConfig(SFTConfig):
"""
Configuration class for the [`SFTTrainer`].
Only the parameters specific to SFT training are listed here. For details on other parameters, refer to the
[`~transformers.TrainingArguments`] documentation.
Using [`~transformers.HfArgumentParser`] we can turn this class into
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
command line.
Parameters:
> Parameters that control the model
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model`
argument of the [`SFTTrainer`] is provided as a string.
use_liger (`bool`, *optional*, defaults to `False`):
Monkey patch the model with Liger kernels to increase throughput and reduce memory usage.
> Parameters that control the data preprocessing
dataset_text_field (`str`, *optional*, defaults to `"text"`):
Name of the column that contains text data in the dataset.
dataset_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
Dictionary of optional keyword arguments for the dataset preparation. The only supported key is
`skip_prepare_dataset`.
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
Number of processes to use for processing the dataset.
max_seq_length (`int` or `None`, *optional*, defaults to `1024`):
Maximum length of the tokenized sequence. Sequences longer than `max_seq_length` are truncated from the
right.
If `None`, no truncation is applied. When packing is enabled, this value sets the sequence length.
packing (`bool`, *optional*, defaults to `False`):
Whether to pack multiple sequences into a fixed-length format. Uses `max_seq_length` to define sequence
length.
eval_packing (`bool` or `None`, *optional*, defaults to `None`):
Whether to pack the eval dataset. If `None`, uses the same value as `packing`.
> Parameters that control the training
learning_rate (`float`, *optional*, defaults to `2e-5`):
Initial learning rate for [`AdamW`] optimizer. The default value replaces that of
[`~transformers.TrainingArguments`].
"""
vllm_sampling_params: Optional[Any] = field(
default = None,
metadata = {'help': 'vLLM SamplingParams'},
)
unsloth_num_chunks : Optional[int] = field(
default = -1,
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
)
def __init__(
self,
output_dir = None,
overwrite_output_dir = None,
do_train = False,
do_eval = False,
do_predict = False,
eval_strategy = 'no',
prediction_loss_only = False,
per_device_train_batch_size = 4,
per_device_eval_batch_size = 4,
per_gpu_train_batch_size = None,
per_gpu_eval_batch_size = None,
gradient_accumulation_steps = 2,
eval_accumulation_steps = 2,
eval_delay = 0,
torch_empty_cache_steps = 250,
learning_rate = 5e-05,
weight_decay = 0.01,
adam_beta1 = 0.9,
adam_beta2 = 0.999,
adam_epsilon = 1e-08,
max_grad_norm = 1.0,
num_train_epochs = 3.0,
max_steps = -1,
lr_scheduler_type = 'linear',
warmup_ratio = 0.1,
warmup_steps = 0,
log_level = 'passive',
log_level_replica = 'warning',
log_on_each_node = True,
logging_dir = None,
logging_strategy = 'steps',
logging_first_step = False,
logging_steps = 1,
logging_nan_inf_filter = False,
save_strategy = 'steps',
save_steps = 500,
save_total_limit = None,
save_safetensors = True,
save_on_each_node = False,
save_only_model = False,
restore_callback_states_from_checkpoint = False,
no_cuda = False,
use_cpu = False,
use_mps_device = False,
seed = 3407,
data_seed = 3407,
jit_mode_eval = False,
use_ipex = False,
bf16 = False,
fp16 = False,
fp16_opt_level = 'O1',
half_precision_backend = 'auto',
bf16_full_eval = False,
fp16_full_eval = False,
tf32 = None,
local_rank = -1,
ddp_backend = None,
tpu_num_cores = None,
tpu_metrics_debug = False,
debug = '',
dataloader_drop_last = False,
eval_steps = None,
dataloader_num_workers = 0,
dataloader_prefetch_factor = None,
past_index = -1,
run_name = None,
disable_tqdm = None,
remove_unused_columns = True,
label_names = None,
load_best_model_at_end = False,
metric_for_best_model = None,
greater_is_better = None,
ignore_data_skip = False,
fsdp = '',
fsdp_min_num_params = 0,
fsdp_config = None,
fsdp_transformer_layer_cls_to_wrap = None,
accelerator_config = None,
deepspeed = None,
label_smoothing_factor = 0.0,
optim = 'adamw_8bit',
optim_args = None,
adafactor = False,
group_by_length = False,
length_column_name = 'length',
report_to = None,
ddp_find_unused_parameters = None,
ddp_bucket_cap_mb = None,
ddp_broadcast_buffers = None,
dataloader_pin_memory = True,
dataloader_persistent_workers = False,
skip_memory_metrics = True,
use_legacy_prediction_loop = False,
push_to_hub = False,
resume_from_checkpoint = None,
hub_model_id = None,
hub_strategy = 'every_save',
hub_token = None,
hub_private_repo = None,
hub_always_push = False,
gradient_checkpointing = False,
gradient_checkpointing_kwargs = None,
include_inputs_for_metrics = False,
eval_do_concat_batches = True,
fp16_backend = 'auto',
evaluation_strategy = None,
push_to_hub_model_id = None,
push_to_hub_organization = None,
push_to_hub_token = None,
mp_parameters = '',
auto_find_batch_size = False,
full_determinism = False,
torchdynamo = None,
ray_scope = 'last',
ddp_timeout = 1800,
torch_compile = False,
torch_compile_backend = None,
torch_compile_mode = None,
dispatch_batches = None,
split_batches = None,
include_tokens_per_second = False,
include_num_input_tokens_seen = False,
neftune_noise_alpha = None,
optim_target_modules = None,
batch_eval_metrics = False,
eval_on_start = False,
use_liger_kernel = False,
eval_use_gather_object = False,
average_tokens_across_devices = False,
model_init_kwargs = None,
use_liger = False,
dataset_text_field = 'text',
dataset_kwargs = None,
dataset_num_proc = None,
max_seq_length = 1024,
packing = False,
eval_packing = None,
dataset_batch_size = None,
num_of_sequences = None,
chars_per_token = None,
vllm_sampling_params = None,
unsloth_num_chunks = -1,
**kwargs,
):
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
if output_dir is None and save_strategy == 'steps' and save_steps == 500:
output_dir = 'unsloth_training_checkpoints'
save_strategy = 'no'
if dataset_num_proc is None:
from multiprocessing import cpu_count
dataset_num_proc = cpu_count()
super().__init__(
output_dir = output_dir,
overwrite_output_dir = overwrite_output_dir,
do_train = do_train,
do_eval = do_eval,
do_predict = do_predict,
eval_strategy = eval_strategy,
prediction_loss_only = prediction_loss_only,
per_device_train_batch_size = per_device_train_batch_size,
per_device_eval_batch_size = per_device_eval_batch_size,
per_gpu_train_batch_size = per_gpu_train_batch_size,
per_gpu_eval_batch_size = per_gpu_eval_batch_size,
gradient_accumulation_steps = gradient_accumulation_steps,
eval_accumulation_steps = eval_accumulation_steps,
eval_delay = eval_delay,
torch_empty_cache_steps = torch_empty_cache_steps,
learning_rate = learning_rate,
weight_decay = weight_decay,
adam_beta1 = adam_beta1,
adam_beta2 = adam_beta2,
adam_epsilon = adam_epsilon,
max_grad_norm = max_grad_norm,
num_train_epochs = num_train_epochs,
max_steps = max_steps,
lr_scheduler_type = lr_scheduler_type,
warmup_ratio = warmup_ratio,
warmup_steps = warmup_steps,
log_level = log_level,
log_level_replica = log_level_replica,
log_on_each_node = log_on_each_node,
logging_dir = logging_dir,
logging_strategy = logging_strategy,
logging_first_step = logging_first_step,
logging_steps = logging_steps,
logging_nan_inf_filter = logging_nan_inf_filter,
save_strategy = save_strategy,
save_steps = save_steps,
save_total_limit = save_total_limit,
save_safetensors = save_safetensors,
save_on_each_node = save_on_each_node,
save_only_model = save_only_model,
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
no_cuda = no_cuda,
use_cpu = use_cpu,
use_mps_device = use_mps_device,
seed = seed,
data_seed = data_seed,
jit_mode_eval = jit_mode_eval,
use_ipex = use_ipex,
bf16 = bf16,
fp16 = fp16,
fp16_opt_level = fp16_opt_level,
half_precision_backend = half_precision_backend,
bf16_full_eval = bf16_full_eval,
fp16_full_eval = fp16_full_eval,
tf32 = tf32,
local_rank = local_rank,
ddp_backend = ddp_backend,
tpu_num_cores = tpu_num_cores,
tpu_metrics_debug = tpu_metrics_debug,
debug = debug,
dataloader_drop_last = dataloader_drop_last,
eval_steps = eval_steps,
dataloader_num_workers = dataloader_num_workers,
dataloader_prefetch_factor = dataloader_prefetch_factor,
past_index = past_index,
run_name = run_name,
disable_tqdm = disable_tqdm,
remove_unused_columns = remove_unused_columns,
label_names = label_names,
load_best_model_at_end = load_best_model_at_end,
metric_for_best_model = metric_for_best_model,
greater_is_better = greater_is_better,
ignore_data_skip = ignore_data_skip,
fsdp = fsdp,
fsdp_min_num_params = fsdp_min_num_params,
fsdp_config = fsdp_config,
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
accelerator_config = accelerator_config,
deepspeed = deepspeed,
label_smoothing_factor = label_smoothing_factor,
optim = optim,
optim_args = optim_args,
adafactor = adafactor,
group_by_length = group_by_length,
length_column_name = length_column_name,
report_to = report_to,
ddp_find_unused_parameters = ddp_find_unused_parameters,
ddp_bucket_cap_mb = ddp_bucket_cap_mb,
ddp_broadcast_buffers = ddp_broadcast_buffers,
dataloader_pin_memory = dataloader_pin_memory,
dataloader_persistent_workers = dataloader_persistent_workers,
skip_memory_metrics = skip_memory_metrics,
use_legacy_prediction_loop = use_legacy_prediction_loop,
push_to_hub = push_to_hub,
resume_from_checkpoint = resume_from_checkpoint,
hub_model_id = hub_model_id,
hub_strategy = hub_strategy,
hub_token = hub_token,
hub_private_repo = hub_private_repo,
hub_always_push = hub_always_push,
gradient_checkpointing = gradient_checkpointing,
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
include_inputs_for_metrics = include_inputs_for_metrics,
eval_do_concat_batches = eval_do_concat_batches,
fp16_backend = fp16_backend,
evaluation_strategy = evaluation_strategy,
push_to_hub_model_id = push_to_hub_model_id,
push_to_hub_organization = push_to_hub_organization,
push_to_hub_token = push_to_hub_token,
mp_parameters = mp_parameters,
auto_find_batch_size = auto_find_batch_size,
full_determinism = full_determinism,
torchdynamo = torchdynamo,
ray_scope = ray_scope,
ddp_timeout = ddp_timeout,
torch_compile = torch_compile,
torch_compile_backend = torch_compile_backend,
torch_compile_mode = torch_compile_mode,
dispatch_batches = dispatch_batches,
split_batches = split_batches,
include_tokens_per_second = include_tokens_per_second,
include_num_input_tokens_seen = include_num_input_tokens_seen,
neftune_noise_alpha = neftune_noise_alpha,
optim_target_modules = optim_target_modules,
batch_eval_metrics = batch_eval_metrics,
eval_on_start = eval_on_start,
use_liger_kernel = use_liger_kernel,
eval_use_gather_object = eval_use_gather_object,
average_tokens_across_devices = average_tokens_across_devices,
model_init_kwargs = model_init_kwargs,
use_liger = use_liger,
dataset_text_field = dataset_text_field,
dataset_kwargs = dataset_kwargs,
dataset_num_proc = dataset_num_proc,
max_seq_length = max_seq_length,
packing = packing,
eval_packing = eval_packing,
dataset_batch_size = dataset_batch_size,
num_of_sequences = num_of_sequences,
chars_per_token = chars_per_token,**kwargs)
self.vllm_sampling_params = vllm_sampling_params
self.unsloth_num_chunks = unsloth_num_chunks
pass
class _UnslothSFTTrainer(Trainer):
""""""
_tag_names = ["trl", "sft"]
@deprecate_kwarg(
"tokenizer", "0.16.0", "processing_class", warn_if_greater_or_equal_version=True, raise_if_both_names=True
)
def __init__(
self,
model: Union[str, nn.Module, PreTrainedModel],
args: Optional[Union[SFTConfig, TrainingArguments]] = None,
data_collator: Optional[DataCollator] = None, # type: ignore
train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
processing_class: Optional[
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
] = None,
compute_loss_func: Optional[Callable] = None,
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
callbacks: Optional[list[TrainerCallback]] = None,
optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None),
optimizer_cls_and_kwargs: Optional[tuple[Type[torch.optim.Optimizer], dict[str, Any]]] = None,
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
peft_config: Optional["PeftConfig"] = None,
formatting_func: Optional[Union[Callable[[dict], str], Callable[[dict], list[str]]]] = None,
):
# Args
if args is None:
model_name = model if isinstance(model, str) else model.config._name_or_path
model_name = model_name.split("/")[-1]
args = SFTConfig(f"{model_name}-SFT")
elif isinstance(args, TrainingArguments) and not isinstance(args, SFTConfig):
dict_args = args.to_dict()
dict_args["hub_token"] = args.hub_token # to_dict hides the hub_token
dict_args.pop("push_to_hub_token")
args = SFTConfig(**dict_args)
# Model
if args.model_init_kwargs is not None and not isinstance(model, str):
warnings.warn(
"You passed model_init_kwargs to the `SFTConfig`, but your model is already instantiated. "
"The `model_init_kwargs` will be ignored."
)
if isinstance(model, str):
model = self._create_model_from_path(model, args)
# PEFT configuration and model wrapping
if False:
model = self._prepare_peft_model(model, peft_config, args)
# Handle the tokenizer
if processing_class is None:
processing_class = AutoTokenizer.from_pretrained(model.config._name_or_path)
if processing_class.pad_token is None:
processing_class.pad_token = processing_class.eos_token # required for padding when collating data
# Dataset
preprocess_dataset = args.dataset_kwargs is None or not args.dataset_kwargs.get("skip_prepare_dataset", False)
if preprocess_dataset:
train_dataset = self._prepare_dataset(
train_dataset, processing_class, args, args.packing, formatting_func, "train"
)
if eval_dataset is not None:
packing = args.packing if args.eval_packing is None else args.eval_packing
if isinstance(eval_dataset, dict):
eval_dataset = {
key: self._prepare_dataset(dataset, processing_class, args, packing, formatting_func, key)
for key, dataset in eval_dataset.items()
}
else:
eval_dataset = self._prepare_dataset(
eval_dataset, processing_class, args, packing, formatting_func, "eval"
)
# Data collator
if data_collator is None:
data_collator = DataCollatorForLanguageModeling(tokenizer=processing_class, mlm=False)
# Initialize the metrics
self._metrics = defaultdict(list)
# Initialize the Trainer. Parent class will handle:
# - DeepSpeed configuration (through create_accelerator_and_postprocess)
# - FSDP setup
# - Distributed training setup
# - Optimizer and scheduler creation
# Some arguments are only available for transformers>=4.47.0. Can be removed when the min version is bumped.
super_init_kwargs = {}
if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"):
super_init_kwargs["optimizer_cls_and_kwargs"] = optimizer_cls_and_kwargs
else:
if optimizer_cls_and_kwargs is not None:
warnings.warn(
"The `optimizer_cls_and_kwargs` argument is only available for `transformers>=4.47.0`. "
"The default optimizer will be used. "
"Remove the `optimizer_cls_and_kwargs` or upgrade to `transformers>=4.47.0`."
)
super().__init__(
model=model,
args=args,
data_collator=data_collator,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
processing_class=processing_class,
compute_loss_func=compute_loss_func,
compute_metrics=compute_metrics,
callbacks=callbacks,
optimizers=optimizers,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
**super_init_kwargs,
)
# Add tags for models that have been loaded with the correct transformers version
if hasattr(self.model, "add_model_tags"):
self.model.add_model_tags(self._tag_names)
def _create_model_from_path(self, model_path: str, args: SFTConfig) -> PreTrainedModel:
"""Creates a model from a path or model identifier."""
model_init_kwargs = args.model_init_kwargs or {}
# Handle torch dtype
torch_dtype = model_init_kwargs.get("torch_dtype")
if isinstance(torch_dtype, torch.dtype) or torch_dtype == "auto" or torch_dtype is None:
pass # torch_dtype is already a torch.dtype or "auto" or None
elif isinstance(torch_dtype, str): # it's a str, but not "auto"
torch_dtype = getattr(torch, torch_dtype)
model_init_kwargs["torch_dtype"] = torch_dtype
else:
raise ValueError(
"Invalid `torch_dtype` passed to `SFTConfig`. Expected either 'auto' or a string representing "
f"a `torch.dtype` (e.g., 'float32'), but got {torch_dtype}."
)
# Disable caching if gradient checkpointing is enabled (not supported)
if args.gradient_checkpointing:
model_init_kwargs["use_cache"] = False
# Create model
if args.use_liger:
if not is_liger_kernel_available():
raise ImportError("Please install Liger-kernel for use_liger=True")
model = AutoLigerKernelForCausalLM.from_pretrained(model_path, **model_init_kwargs)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, **model_init_kwargs)
return model
def _prepare_peft_model(self, model: PreTrainedModel, peft_config: Any, args: SFTConfig) -> PreTrainedModel:
"""Prepares a model for PEFT training."""
if not is_peft_available():
raise ImportError("To use PeftModel, you need to install the `peft` library.")
if not isinstance(peft_config, PeftConfig):
raise ValueError(
f"Expected PeftConfig object but got {type(peft_config)}. If you want to use the PeftModel, you need "
"to pass a PeftConfig object to the SFTTrainer."
)
if isinstance(model, PeftModel):
return model
# Handle quantized models (QLoRA)
is_qlora = getattr(model, "is_loaded_in_4bit", False) or getattr(model, "is_loaded_in_8bit", False)
is_sharded_qlora = False
if getattr(model, "is_loaded_in_4bit", False):
# Check if model is sharded (FSDP/DS-Zero3)
for _, param in model.named_parameters():
if param.__class__.__name__ == "Params4bit":
is_sharded_qlora = param.data.device.type in {"cpu", "meta"}
break
# Prepare model for kbit training if needed
if is_qlora and not is_sharded_qlora:
model = self._prepare_model_for_kbit_training(model, args)
# Disable gradient checkpointing as it's handled by prepare_model_for_kbit_training
args = dataclasses.replace(args, gradient_checkpointing=False)
elif args.gradient_checkpointing:
model = self._enable_gradient_checkpointing(model, args)
# Create PEFT model
if (
version.parse(peft.__version__) >= version.parse("0.12") # autocast_adapter_dtype introduced in 0.12
and getattr(model, "is_loaded_in_4bit", False)
and is_sharded_qlora
):
model = get_peft_model(model, peft_config, autocast_adapter_dtype=False)
else:
model = get_peft_model(model, peft_config)
# Handle bf16 casting for 4-bit models
if args.bf16 and getattr(model, "is_loaded_in_4bit", False) and not is_sharded_qlora:
peft_module_casting_to_bf16(model)
return model
def _prepare_model_for_kbit_training(self, model: PreTrainedModel, args: SFTConfig) -> PreTrainedModel:
"""Prepares a quantized model for kbit training."""
prepare_model_kwargs = {
"use_gradient_checkpointing": args.gradient_checkpointing,
"gradient_checkpointing_kwargs": args.gradient_checkpointing_kwargs or {},
}
return prepare_model_for_kbit_training(model, **prepare_model_kwargs)
def _enable_gradient_checkpointing(self, model: PreTrainedModel, args: SFTConfig) -> PreTrainedModel:
"""Enables gradient checkpointing for the model."""
gradient_checkpointing_kwargs = args.gradient_checkpointing_kwargs or {}
use_reentrant = (
"use_reentrant" not in gradient_checkpointing_kwargs or gradient_checkpointing_kwargs["use_reentrant"]
)
if use_reentrant:
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
return model
def _prepare_dataset(
self,
dataset: Union[Dataset, IterableDataset],
processing_class,
args,
packing: bool,
formatting_func: Optional[Callable[[dict], str]],
dataset_name: str,
) -> Union[Dataset, IterableDataset]:
# All Unsloth Zoo code licensed under LGPLv3
if isinstance(dataset, ConstantLengthDataset): return dataset
map_kwargs = {}
use_desc = isinstance(dataset, Dataset)
is_vlm = hasattr(processing_class, "tokenizer")
tokenizer = processing_class
if is_vlm: tokenizer = processing_class.tokenizer
# Get max length
max_seq_length = getattr(args, "max_length", 0)
if max_seq_length == 0: max_seq_length = getattr(args, "max_seq_length", 0)
if max_seq_length == 0: max_seq_length = getattr(self, "max_seq_length", 0)
if max_seq_length == 0: max_seq_length = getattr(self, "max_seq", 0)
dataset_text_field = getattr(args, "dataset_text_field", "text")
do_truncation = max_seq_length != 0
do_formatting_func = False
do_tokenize = True
# Get correct column names
column_names = set(next(iter(dataset)).keys())
used_column_names = ["input_ids"]
if "attention_mask" in column_names:
used_column_names.append("attention_mask")
# Check if already tokenized so skip
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling
if "labels" in column_names:
# Most likely forgot data collator!
if is_vlm and not hasattr(tokenizer, "pad"):
# Check if processing_class has a .pad, if not, use tokenizer.tokenizer
raise RuntimeError(f"Unsloth: {processing_class.__class__} does not have .pad!")
self.data_collator = DataCollatorForSeq2Seq(tokenizer)
used_column_names.append("labels")
do_tokenize = False
elif "input_ids" in column_names:
# Skip dataset prep, and set data collator
if is_vlm and not hasattr(tokenizer, "pad"):
# Check if processing_class has a .pad, if not, use tokenizer.tokenizer
raise RuntimeError(f"Unsloth: {processing_class.__class__} does not have .pad!")
self.data_collator = DataCollatorForLanguageModeling(tokenizer, mlm = False)
do_tokenize = False
elif dataset_text_field not in column_names:
do_formatting_func = True
if formatting_func is None:
raise RuntimeError("Unsloth: You must specify a `formatting_func`")
pass
if do_tokenize:
# Check double BOS tokens
if do_formatting_func:
test_text = formatting_func(dataset[0])
if not isinstance(test_text, list):
raise ValueError(
"Unsloth: The `formatting_func` should return a list of processed strings."
)
test_text = test_text[0]
else:
test_text = dataset[0][dataset_text_field]
# Get chat template
chat_template = getattr(processing_class, 'chat_template', '')
if chat_template == '' and is_vlm:
chat_template = getattr(tokenizer, 'chat_template', '')
if chat_template is None:
chat_template = ''
# Get bos_token
add_special_tokens = True
bos_token_1 = getattr(processing_class, 'bos_token', None)
bos_token_2 = getattr(tokenizer, 'bos_token', None)
bos_token = bos_token_1 or bos_token_2
if bos_token is not None:
if test_text.startswith(bos_token) or bos_token in chat_template:
add_special_tokens = False
print("Unsloth: We found double BOS tokens - we shall remove one automatically.")
pass
# Create tokenize function
def _tokenize(example):
return tokenizer(
example[dataset_text_field] if not do_formatting_func else formatting_func(example),
truncation = do_truncation,
max_length = max_seq_length,
return_token_type_ids = False,
add_special_tokens = add_special_tokens,
)
pass
map_kwargs["num_proc"] = getattr(args, "dataset_num_proc", 2)
if use_desc: map_kwargs["desc"] = f'Unsloth: Tokenizing ["{dataset_text_field}"]'
dataset = dataset.map(_tokenize, batched = True, **map_kwargs)
# If VLM, switch data collator since .pad is needed!
if is_vlm and not hasattr(processing_class, "pad"):
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm = False)
self.data_collator = data_collator
pass
pass
if packing:
print("Unsloth: Hugging Face's packing is currently buggy - we're disabling it for now!")
return dataset
if max_seq_length == 0:
raise ValueError("When packing is enabled, `max_seq_length` can't be `None`.")
if use_desc: map_kwargs["desc"] = f"Unsloth: Packing {dataset_name} dataset"
dataset = dataset.select_columns(used_column_names).map(
pack_examples,
batched = True,
fn_kwargs = {"seq_length": max_seq_length,},
**map_kwargs,
)
pass
return dataset
def compute_loss(self, model, inputs, return_outputs = False, num_items_in_batch = None):
outputs = super().compute_loss(
model,
inputs,
return_outputs = return_outputs,
num_items_in_batch = num_items_in_batch,
)
return outputs
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None:
metrics = {key: sum(val) / len(val) for key, val in self._metrics.items()} # average the metrics
# This method can be called both in training and evaluation. When called in evaluation, the keys in `logs`
# start with "eval_". We need to add the prefix "eval_" to the keys in `metrics` to match the format.
if next(iter(logs.keys())).startswith("eval_"):
metrics = {f"eval_{key}": val for key, val in metrics.items()}
logs = {**logs, **metrics}
if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"):
super().log(logs, start_time)
else: # transformers<=4.46
super().log(logs)
self._metrics.clear()
def create_model_card(
self,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
tags: Union[str, list[str], None] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
model_name (`str` or `None`, *optional*, defaults to `None`):
Name of the model.
dataset_name (`str` or `None`, *optional*, defaults to `None`):
Name of the dataset used for training.
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
Tags to be associated with the model card.
"""
if not self.is_world_process_zero():
return
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
base_model = self.model.config._name_or_path
else:
base_model = None
tags = tags or []
if isinstance(tags, str):
tags = [tags]
if hasattr(self.model.config, "unsloth_version"):
tags.append("unsloth")
model_card = generate_model_card(
base_model=base_model,
model_name=model_name,
hub_model_id=self.hub_model_id,
dataset_name=dataset_name,
tags=tags,
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
comet_url=get_comet_experiment_url(),
trainer_name="SFT",
)
model_card.save(os.path.join(self.args.output_dir, "README.md"))
class UnslothSFTTrainer(_UnslothSFTTrainer):
"""
Trainer for Supervised Fine-Tuning (SFT) method.
This class is a wrapper around the [`transformers.Trainer`] class and inherits all of its attributes and methods.
Example:
```python
from datasets import load_dataset
from trl import SFTTrainer
dataset = load_dataset("roneneldan/TinyStories", split="train[:1%]")
trainer = SFTTrainer(model="Qwen/Qwen2-0.5B-Instruct", train_dataset=dataset)
trainer.train()
```
Args:
model (`Union[str, PreTrainedModel]`):
Model to be trained. Can be either:
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or
a path to a *directory* containing model weights saved using
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is
loaded using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keywork arguments
in `args.model_init_kwargs`.
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported.
args ([`SFTConfig`], *optional*, defaults to `None`):
Configuration for this trainer. If `None`, a default configuration is used.
data_collator (`DataCollator`, *optional*):
Function to use to form a batch from a list of elements of the prcessed `train_dataset` or `eval_dataset`.
Will default to [`~transformers.default_data_collator`] if no `processing_class` is provided, an instance
of [`~transformers.DataCollatorWithPadding`] otherwise if the processing_class is a feature extractor or
tokenizer.
train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]):
Dataset to use for training. SFT supports both [language modeling](#language-modeling) type and
[prompt-completion](#prompt-completion) type. The format of the samples can be either:
- [Standard](dataset_formats#standard): Each sample contains plain text.
- [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role
and content).
The trainer also supports processed datasets (tokenized) as long as they contain an `input_ids` field.
eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`):
Dataset to use for evaluation. It must meet the same requirements as `train_dataset`.
processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*, defaults to `None`):
Processing class used to process the data. If `None`, the processing class is loaded from the model's name
with [`~transformers.AutoTokenizer.from_pretrained`].
callbacks (list of [`~transformers.TrainerCallback`], *optional*, defaults to `None`):
List of callbacks to customize the training loop. Will add those to the list of default callbacks
detailed in [here](https://huggingface.co/docs/transformers/main_classes/callback).
If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`]
method.
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`):
A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your
model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`.
optimizer_cls_and_kwargs (`Tuple[Type[torch.optim.Optimizer], Dict[str, Any]]`, *optional*, defaults to `None`):
A tuple containing the optimizer class and keyword arguments to use.
Overrides `optim` and `optim_args` in `args`. Incompatible with the `optimizers` argument.
Unlike `optimizers`, this argument avoids the need to place model parameters on the correct devices before initializing the Trainer.
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`, *optional*, defaults to `None`):
A function that preprocess the logits right before caching them at each evaluation step. Must take two
tensors, the logits and the labels, and return the logits once processed as desired. The modifications made
by this function will be reflected in the predictions received by `compute_metrics`.
Note that the labels (second parameter) will be `None` if the dataset does not have them.
peft_config ([`~peft.PeftConfig`], *optional*, defaults to `None`):
PEFT configuration used to wrap the model. If `None`, the model is not wrapped.
formatting_func (`Optional[Callable]`):
Formatting function applied to the dataset before tokenization.
"""
def __init__(
self,
model,
args = None,
data_collator = None,
train_dataset = None,
eval_dataset = None,
processing_class = None,
compute_loss_func = None,
compute_metrics = None,
callbacks = None,
optimizer_cls_and_kwargs = None,
preprocess_logits_for_metrics = None,
peft_config = None,
formatting_func = None,
**kwargs
):
if args is None: args = UnslothSFTConfig()
use_bf16 = getattr(args, 'bf16', False)
use_fp16 = getattr(args, 'fp16', False)
force_float32 = False
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1':
print('Unsloth: Switching to float32 training since model cannot work with float16')
force_float32 = True
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
dtype = getattr(model.config, 'torch_dtype', None)
if dtype is None: dtype = model.get_input_embeddings().dtype
from unsloth_zoo.utils import _get_dtype
dtype = _get_dtype(dtype)
float16 = dtype == torch.float16
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
if force_float32:
args.fp16 = False
args.bf16 = False
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
args.fp16 = float16
args.bf16 = not float16
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
args.eval_strategy = 'steps'
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
ga_steps = getattr(args, 'gradient_accumulation_steps', None)
if ga_steps is not None and ga_steps > 1:
from transformers import __version__ as transformers_version
if Version(transformers_version) <= Version('4.45.2'):
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
if getattr(args, 'eval_strategy', 'no') != 'no':
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
fp16_full_eval = getattr(args, 'fp16_full_eval', False)
bf16_full_eval = getattr(args, 'bf16_full_eval', False)
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
if force_float32:
args.bf16_full_eval = False
args.fp16_full_eval = False
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
args.bf16_full_eval = True
args.fp16_full_eval = False
elif not bf16_full_eval and not fp16_full_eval:
args.bf16_full_eval = args.bf16
args.fp16_full_eval = args.fp16
_output_logits = False
if locals().get('compute_metrics', None) is not None: _output_logits = True
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
if _output_logits:
os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
pass
else:
model_max_seq_length = getattr(model, 'max_seq_length', None)
args_max_seq_length = getattr(args, 'max_seq_length', None)
if args_max_seq_length is None and model_max_seq_length is not None:
max_seq_length = model.max_seq_length
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
if model is not None and hasattr(model, 'for_training'):
model.for_training()
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
if 'processing_class' in locals():
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
__tokenizer = processing_class if 'processing_class' in locals() else tokenizer
from unsloth_zoo.vision_utils import UnslothVisionDataCollator
if not isinstance(data_collator, UnslothVisionDataCollator):
if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names:
data_collator = DataCollatorForLanguageModeling(__tokenizer, mlm = False)
elif isinstance(data_collator, DataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names:
data_collator = DataCollatorForSeq2Seq(__tokenizer)
else:
if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False
if hasattr(args, 'dataset_text_field'): args.dataset_text_field = ''
if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True}
if not isinstance(data_collator, UnslothVisionDataCollator):
if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'):
if isinstance(data_collator, DataCollatorForSeq2Seq):
data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer)
else:
data_collator = DataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False)
other_metrics = []
from unsloth_zoo.logging_utils import PatchRLStatistics
PatchRLStatistics('sft_trainer', other_metrics)
IGNORED_TOKENIZER_NAMES = os.environ.get('UNSLOTH_IGNORED_TOKENIZER_NAMES', '').split('\n')
from unsloth_zoo.tokenizer_utils import fix_untrained_tokens
from unsloth_zoo.training_utils import fix_zero_training_loss
if 'tokenizer' not in locals(): tokenizer = processing_class
fix_untrained_tokens(model, tokenizer, train_dataset, IGNORED_TOKENIZER_NAMES, eps = 1e-16)
fix_zero_training_loss(model, tokenizer, train_dataset)
super().__init__(
model = model,
args = args,
data_collator = data_collator,
train_dataset = train_dataset,
eval_dataset = eval_dataset,
processing_class = processing_class,
compute_loss_func = compute_loss_func,
compute_metrics = compute_metrics,
callbacks = callbacks,
optimizer_cls_and_kwargs = optimizer_cls_and_kwargs,
preprocess_logits_for_metrics = preprocess_logits_for_metrics,
peft_config = peft_config,
formatting_func = formatting_func,**kwargs)
if hasattr(self, 'neftune_hook_handle'):
self.neftune_hook_handle.remove()
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
if getattr(args, 'neftune_noise_alpha', None) is not None:
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
pass
pass