khalidrajan's picture
End of training
9b84002 verified
metadata
library_name: transformers
license: mit
base_model: FacebookAI/roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: roberta-base_legal_nli_finetuned
    results: []

roberta-base_legal_nli_finetuned

This model is a fine-tuned version of FacebookAI/roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7710
  • Accuracy: 0.8298
  • Precision: 0.8442
  • Recall: 0.8324
  • F1: 0.8363

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 28 1.0979 0.3085 0.1028 0.3333 0.1572
No log 2.0 56 1.0881 0.3085 0.1028 0.3333 0.1572
No log 3.0 84 0.4565 0.8404 0.8412 0.8437 0.8423
No log 4.0 112 0.4155 0.8617 0.8651 0.8652 0.8650
No log 5.0 140 0.5513 0.8085 0.8386 0.8130 0.8167
No log 6.0 168 0.6108 0.8723 0.8783 0.8750 0.8765
No log 7.0 196 0.6971 0.8298 0.8442 0.8324 0.8363
No log 8.0 224 0.6893 0.8298 0.8442 0.8324 0.8363
No log 9.0 252 0.7855 0.8298 0.8442 0.8324 0.8363
No log 10.0 280 0.7710 0.8298 0.8442 0.8324 0.8363

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1