File size: 1,829 Bytes
0035e5a
 
 
 
 
 
7356ed1
 
 
0035e5a
 
 
 
 
 
 
 
 
 
 
 
7356ed1
 
 
 
 
0035e5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7356ed1
 
 
 
 
 
0035e5a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: vit-base-skin
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-skin

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6272
- Accuracy: 0.8549
- F1: 0.8558
- Precision: 0.8590
- Recall: 0.8549

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.4385        | 1.0   | 626  | 0.4796          | 0.8290   | 0.8273 | 0.8726    | 0.8290 |
| 0.3573        | 2.0   | 1252 | 0.4745          | 0.8549   | 0.8581 | 0.8651    | 0.8549 |
| 0.1444        | 3.0   | 1878 | 0.6086          | 0.8394   | 0.8406 | 0.8440    | 0.8394 |
| 0.0055        | 4.0   | 2504 | 0.6272          | 0.8549   | 0.8558 | 0.8590    | 0.8549 |


### Framework versions

- Transformers 4.29.2
- Pytorch 1.13.1
- Datasets 2.14.5
- Tokenizers 0.13.3