File size: 2,015 Bytes
169c57f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2d32b7
 
 
 
 
169c57f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebfade5
169c57f
 
 
 
 
 
f2d32b7
 
 
 
 
 
169c57f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: vit-focal-skin
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-focal-skin

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5783
- Accuracy: 0.8653
- F1: 0.8726
- Precision: 0.8851
- Recall: 0.8653

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.1024        | 1.0   | 626  | 0.4875          | 0.8187   | 0.8247 | 0.8725    | 0.8187 |
| 0.1279        | 2.0   | 1252 | 0.4645          | 0.8187   | 0.8223 | 0.8295    | 0.8187 |
| 0.0912        | 3.0   | 1878 | 0.4883          | 0.8497   | 0.8454 | 0.8462    | 0.8497 |
| 0.0397        | 4.0   | 2504 | 0.5439          | 0.8238   | 0.8274 | 0.8342    | 0.8238 |
| 0.0004        | 5.0   | 3130 | 0.5795          | 0.8601   | 0.8668 | 0.8787    | 0.8601 |
| 0.0002        | 6.0   | 3756 | 0.5783          | 0.8653   | 0.8726 | 0.8851    | 0.8653 |


### Framework versions

- Transformers 4.29.2
- Pytorch 1.13.1
- Datasets 2.14.5
- Tokenizers 0.13.3