|
|
|
|
|
""" |
|
This script sets up a simple HuggingFace-based training + inference pipeline |
|
for bug-fixing AI using a CodeT5 model and supports continual training. |
|
You can upload this script to HuggingFace Space or Hub repo. |
|
""" |
|
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, Trainer, TrainingArguments, DataCollatorForSeq2Seq |
|
from datasets import load_dataset, DatasetDict |
|
import torch |
|
import os |
|
|
|
|
|
MODEL_NAME = "Salesforce/codet5p-220m" |
|
MODEL_OUT_DIR = "./aifixcode-model" |
|
TRAIN_DATASET_PATH = "./data/train.json" |
|
VAL_DATASET_PATH = "./data/val.json" |
|
|
|
|
|
print("Loading model and tokenizer...") |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) |
|
|
|
|
|
print("Loading dataset...") |
|
def load_json_dataset(train_path, val_path): |
|
dataset = DatasetDict({ |
|
"train": load_dataset("json", data_files=train_path)["train"], |
|
"validation": load_dataset("json", data_files=val_path)["train"] |
|
}) |
|
return dataset |
|
|
|
dataset = load_json_dataset(TRAIN_DATASET_PATH, VAL_DATASET_PATH) |
|
|
|
|
|
print("Tokenizing dataset...") |
|
def preprocess(example): |
|
input_code = example["input"] |
|
target_code = example["output"] |
|
model_inputs = tokenizer(input_code, truncation=True, padding="max_length", max_length=512) |
|
labels = tokenizer(target_code, truncation=True, padding="max_length", max_length=512) |
|
model_inputs["labels"] = labels["input_ids"] |
|
return model_inputs |
|
|
|
encoded_dataset = dataset.map(preprocess, batched=True) |
|
|
|
|
|
print("Setting up trainer...") |
|
training_args = TrainingArguments( |
|
output_dir=MODEL_OUT_DIR, |
|
evaluation_strategy="epoch", |
|
save_strategy="epoch", |
|
learning_rate=5e-5, |
|
per_device_train_batch_size=4, |
|
per_device_eval_batch_size=4, |
|
num_train_epochs=3, |
|
weight_decay=0.01, |
|
logging_dir="./logs", |
|
logging_strategy="epoch", |
|
push_to_hub=True, |
|
hub_model_id="khulnasoft/aifixcode-model", |
|
hub_strategy="every_save" |
|
) |
|
|
|
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model) |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=encoded_dataset["train"], |
|
eval_dataset=encoded_dataset["validation"], |
|
tokenizer=tokenizer, |
|
data_collator=data_collator |
|
) |
|
|
|
|
|
print("Starting training...") |
|
trainer.train() |
|
|
|
|
|
print("Saving model...") |
|
trainer.save_model(MODEL_OUT_DIR) |
|
tokenizer.save_pretrained(MODEL_OUT_DIR) |
|
|
|
print("Training complete and model saved!") |
|
|