khygopole's picture
khygopole/NLP_HerbalMultiLabelClassificationModel
7ed27e3 verified
|
raw
history blame
1.75 kB
metadata
base_model: medicalai/ClinicalBERT
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: working
    results: []

working

This model is a fine-tuned version of medicalai/ClinicalBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0108
  • F1: 0.9834
  • Roc Auc: 0.9930
  • Accuracy: 0.9853

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
No log 1.0 136 0.0223 0.9834 0.9930 0.9853
No log 2.0 272 0.0163 0.9881 0.9959 0.9926
No log 3.0 408 0.0137 0.9834 0.9930 0.9853
0.0216 4.0 544 0.0120 0.9834 0.9930 0.9853
0.0216 5.0 680 0.0108 0.9834 0.9930 0.9853

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0