EXL2 quants of jdqwoi/TooManyMixRolePlay-7B-Story_V3.5

6.00 bits per weight
8.00 bits per weight

Created using the defaults from exllamav2 0.1.3 convert.py
6.0bpw head bits = 6
8.0bpw head bits = 8
length = 8192
dataset rows = 200
measurement rows = 32
measurement length = 8192

TooManyMixRolePlay-7B-Story_V3.5

TooManyMixRolePlay-7B-Story_V3.5 is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: jdqwoi/TooManyMixRolePlay-7B-Story_V2
        layer_range: [0, 32]
      - model: jdqwoi/TooManyMixRolePlay-7B-Story_V3
        layer_range: [0, 32]
merge_method: slerp
base_model: jdqwoi/TooManyMixRolePlay-7B-Story_V2
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "jdqwoi/TooManyMixRolePlay-7B-Story_V3.5"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kim512/TooManyMixRolePlay-7B-Story_V3.5-8.0bpw-h8-exl2