kingabzpro
commited on
Commit
•
0ea370b
1
Parent(s):
4ecb4b8
Code added
Browse files
README.md
CHANGED
@@ -24,5 +24,44 @@ model-index:
|
|
24 |
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
|
26 |
## Usage (with Stable-baselines3)
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
24 |
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
|
26 |
## Usage (with Stable-baselines3)
|
27 |
+
```python
|
28 |
+
import gym
|
29 |
+
from stable_baselines3 import PPO
|
30 |
+
from stable_baselines3.common.evaluation import evaluate_policy
|
31 |
+
from stable_baselines3.common.env_util import make_vec_env
|
32 |
+
|
33 |
+
# Create a vectorized environment of 16 parallel environments
|
34 |
+
env = make_vec_env("LunarLander-v2", n_envs=16)
|
35 |
+
|
36 |
+
# Optimizaed Hyperparameters
|
37 |
+
model = PPO(
|
38 |
+
"MlpPolicy",
|
39 |
+
env=env,
|
40 |
+
n_steps=655,
|
41 |
+
batch_size=32,
|
42 |
+
n_epochs=8,
|
43 |
+
gamma=0.998,
|
44 |
+
gae_lambda=0.98,
|
45 |
+
ent_coef=0.01,
|
46 |
+
verbose=1,
|
47 |
+
)
|
48 |
+
|
49 |
+
# Train it for 500,000 timesteps
|
50 |
+
model.learn(total_timesteps=int(5e6))
|
51 |
+
|
52 |
+
# Create a new environment for evaluation
|
53 |
+
eval_env = gym.make("LunarLander-v2")
|
54 |
+
|
55 |
+
# Evaluate the model with 10 evaluation episodes and deterministic=True
|
56 |
+
mean_reward, std_reward = evaluate_policy(
|
57 |
+
model, eval_env, n_eval_episodes=10, deterministic=True
|
58 |
+
)
|
59 |
+
|
60 |
+
# Print the results
|
61 |
+
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
|
62 |
+
|
63 |
+
#>>> mean_reward=254.56 +/- 18.45056958672337
|
64 |
+
|
65 |
+
|
66 |
+
```
|
67 |
|