kingabzpro
commited on
Commit
•
27234de
1
Parent(s):
273c3de
Initial commit
Browse files- .gitattributes +1 -0
- README.md +1 -1
- a2c-HalfCheetahBulletEnv-v0.zip +2 -2
- a2c-HalfCheetahBulletEnv-v0/data +13 -13
- a2c-HalfCheetahBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-HalfCheetahBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 1647.65 +/- 21.63
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
a2c-HalfCheetahBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09304a8e96c9a49bbb2d12c70e5896d47747a9674b6a97e9de1b68d0d4113472
|
3 |
+
size 124905
|
a2c-HalfCheetahBulletEnv-v0/data
CHANGED
@@ -58,45 +58,45 @@
|
|
58 |
"_np_random": null
|
59 |
},
|
60 |
"n_envs": 4,
|
61 |
-
"num_timesteps":
|
62 |
-
"_total_timesteps":
|
63 |
"_num_timesteps_at_start": 0,
|
64 |
"seed": null,
|
65 |
"action_noise": null,
|
66 |
-
"start_time":
|
67 |
-
"learning_rate": 0.
|
68 |
"tensorboard_log": "./tensorboard",
|
69 |
"lr_schedule": {
|
70 |
":type:": "<class 'function'>",
|
71 |
-
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+
|
72 |
},
|
73 |
"_last_obs": {
|
74 |
":type:": "<class 'numpy.ndarray'>",
|
75 |
-
":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////
|
76 |
},
|
77 |
"_last_episode_starts": {
|
78 |
":type:": "<class 'numpy.ndarray'>",
|
79 |
-
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////
|
80 |
},
|
81 |
"_last_original_obs": {
|
82 |
":type:": "<class 'numpy.ndarray'>",
|
83 |
-
":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAAAAAAAAAAAAAAIA/
|
84 |
},
|
85 |
"_episode_num": 0,
|
86 |
"use_sde": true,
|
87 |
"sde_sample_freq": -1,
|
88 |
-
"_current_progress_remaining": 0.
|
89 |
"ep_info_buffer": {
|
90 |
":type:": "<class 'collections.deque'>",
|
91 |
-
":serialized:": "
|
92 |
},
|
93 |
"ep_success_buffer": {
|
94 |
":type:": "<class 'collections.deque'>",
|
95 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
},
|
97 |
-
"_n_updates":
|
98 |
-
"n_steps":
|
99 |
-
"gamma": 0.
|
100 |
"gae_lambda": 0.9,
|
101 |
"ent_coef": 0.0,
|
102 |
"vf_coef": 0.4,
|
|
|
58 |
"_np_random": null
|
59 |
},
|
60 |
"n_envs": 4,
|
61 |
+
"num_timesteps": 1000192,
|
62 |
+
"_total_timesteps": 1000000,
|
63 |
"_num_timesteps_at_start": 0,
|
64 |
"seed": null,
|
65 |
"action_noise": null,
|
66 |
+
"start_time": 1661949845.4752584,
|
67 |
+
"learning_rate": 0.00073,
|
68 |
"tensorboard_log": "./tensorboard",
|
69 |
"lr_schedule": {
|
70 |
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0frrxAjY7KFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
},
|
73 |
"_last_obs": {
|
74 |
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAX26kPwwJtybMTQQ9zN/ivw0cpaMDea++0k0EvQWGN8BJj/M/eZrXv2ZTSkBNJpy/sRX3v/7ghD+g2FY/KMqNvLk16T4nSNa/w/2gvsQ/kkBcZru/bgINvtuFjL5qIcU+3GqovTSQir3t82q+DAm3JsxNBD1sX5c+DRylo3hKXj/STQS92t48vSS65T4FLFu/u/GqPlbLtD8a6+2+MducP49ojj+DE9C7kv9+vMB9n79PWJi/KD3/P1xmu79uAg2+24WMvmohxT7caqi9NJCKvf7Zgj4MCbcmzE0EPQZ20D8NHKWj8QF9wNJNBL3Y+hi/XN8mvzsaNT1hsOs/ZitIQHZ9DL+JW42/SgYdvs5QBkB3j2o/H3hWv3T5l78FfhfAJ9suP24CDb7bhYy+aiHFPtxqqL00kIq9uTDIPgwJtybMTQQ9wVRFPg0cpaOtPa0/0k0EvR1CGj7gKvA9Y0e+vgGwfb5wOLK+PYRFP+mXST+yHVY/drMCvG8O47623QW/r7jzvqRy8T8n2y4/bgINvtuFjL5qIcU+3GqovTSQir2UdJRiLg=="
|
76 |
},
|
77 |
"_last_episode_starts": {
|
78 |
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
},
|
81 |
"_last_original_obs": {
|
82 |
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBV5te+AAAAAAxWVrwAAAAAmrOFvgAAAADwsL0+AAAAAAq7y7wAAAAAhLicPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOdyzr4AAAAAfgjlOwAAAAClcki+AAAAAOtooj4AAAAAUA6LPQAAAACH6pI/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjPzsvgAAAACKt2i9AAAAAJ8KS74AAAAAYTN7PgAAAABayWA9AAAAACMroT8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC4sF2+AAAAAJpr4j0AAAAAdgy8vgAAAADN5V8+AAAAAEhj0D0AAAAAFgSjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
84 |
},
|
85 |
"_episode_num": 0,
|
86 |
"use_sde": true,
|
87 |
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": -0.00019199999999996997,
|
89 |
"ep_info_buffer": {
|
90 |
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJIIaN70Fr6MAWyUTegDjAF0lEdAk1+WPYFqz3V9lChoBkdAkr9hrSE122gHTegDaAhHQJNfl1fVqet1fZQoaAZHQJL5ABIWgvloB03oA2gIR0CTX5hib2DhdX2UKGgGR0CTxlVIZqEfaAdN6ANoCEdAk1+ZZW7vonV9lChoBkdAkwoRHXmNi2gHTegDaAhHQJNzwqy4Wk91fZQoaAZHQJLM5TkyULVoB03oA2gIR0CTc8PTXrdFdX2UKGgGR0CTjc3j+717aAdN6ANoCEdAk3PE/bCaZ3V9lChoBkdAkz+6OxSpBGgHTegDaAhHQJNzxjSXt0F1fZQoaAZHQJNqzV2A5JdoB03oA2gIR0CTh6IdU83ddX2UKGgGR0CUYd+UQkHEaAdN6ANoCEdAk4ejMFEApHV9lChoBkdAkuQJiiItUWgHTegDaAhHQJOHpFAmiQF1fZQoaAZHQJJ74Pe54GFoB03oA2gIR0CTh6VVPva2dX2UKGgGR0CTKEVYISlFaAdN6ANoCEdAk5uhJAdGRXV9lChoBkdAklMhk3CKrWgHTegDaAhHQJOboixFAml1fZQoaAZHQJPYIO/cnE5oB03oA2gIR0CTm6NKyv9tdX2UKGgGR0CSKCMLF4s3aAdN6ANoCEdAk5ukUCaJAXV9lChoBkdAk/QjTrmhd2gHTegDaAhHQJOvumNzbN91fZQoaAZHQJLeyUGFBY5oB03oA2gIR0CTr7uqm0mddX2UKGgGR0CTcdJcgQpXaAdN6ANoCEdAk6+889wFT3V9lChoBkdAk/tNHDrJKmgHTegDaAhHQJOvvgm7aqV1fZQoaAZHQJENCILw4KhoB03oA2gIR0CTw9I3R5TqdX2UKGgGR0CTFnkdV/+baAdN6ANoCEdAk8PTVx0dR3V9lChoBkdAktYxoRIz32gHTegDaAhHQJPD1IClrM11fZQoaAZHQJQkUvXbudBoB03oA2gIR0CTw9WjoIOZdX2UKGgGR0CTr0w6hg3MaAdN6ANoCEdAk9fhGhEjPnV9lChoBkdAlJV7amGdqmgHTegDaAhHQJPX4lSjxkN1fZQoaAZHQJJV9qagElpoB03oA2gIR0CT1+N4Z/CqdX2UKGgGR0CTl1jWkJrtaAdN6ANoCEdAk9fke6qbSnV9lChoBkdAlOrwTyrgfmgHTegDaAhHQJPr1mh/RVp1fZQoaAZHQJSkPko4MnZoB03oA2gIR0CT69d/rjYJdX2UKGgGR0CT0sixFAmiaAdN6ANoCEdAk+vYlpoK2XV9lChoBkdAlM3XSOR1YGgHTegDaAhHQJPr2ZAprk91fZQoaAZHQJQVWNedCmdoB03oA2gIR0CT/896C17ZdX2UKGgGR0CVJQVwgkkbaAdN6ANoCEdAk//Qo9cKPXV9lChoBkdAlG5WUSqU/2gHTegDaAhHQJP/0cIZ62R1fZQoaAZHQJSBh0mtyPxoB03oA2gIR0CT/9MGX5WSdX2UKGgGR0CVx/+UyHmBaAdN6ANoCEdAlBRKqGUOeHV9lChoBkdAlbnCdFvyb2gHTegDaAhHQJQUS7lJYkp1fZQoaAZHQJVBWPBBRhtoB03oA2gIR0CUFE0qH447dX2UKGgGR0CWg3hllK9PaAdN6ANoCEdAlBRONT987nV9lChoBkdAlbVSHRCx/2gHTegDaAhHQJQoig13t8h1fZQoaAZHQJSL3Y9Pk7xoB03oA2gIR0CUKIs052hadX2UKGgGR0CVLhx5LRKIaAdN6ANoCEdAlCiMSkCV8nV9lChoBkdAlNtpWNm16WgHTegDaAhHQJQojY287IV1fZQoaAZHQJQOoeS0Sh9oB03oA2gIR0CUPOQokRjCdX2UKGgGR0CU5hwOe8PGaAdN6ANoCEdAlDzlTisGPnV9lChoBkdAlhHBLsa86GgHTegDaAhHQJQ85mQKa5R1fZQoaAZHQJVvTzGxUvRoB03oA2gIR0CUPOdrO7g9dX2UKGgGR0CV4Aq+JxecaAdN6ANoCEdAlFFPM4cWCXV9lChoBkdAlFfudbxEv2gHTegDaAhHQJRRUE3bVSZ1fZQoaAZHQJa8kqvvBrNoB03oA2gIR0CUUVFl05lwdX2UKGgGR0CWV29Tgl4UaAdN6ANoCEdAlFFSeI2wV3V9lChoBkdAlYx2WD6Fd2gHTegDaAhHQJRle2rn1Wd1fZQoaAZHQJZZMpBomHBoB03oA2gIR0CUZXyquKXOdX2UKGgGR0CVpmz3yqdZaAdN6ANoCEdAlGV93np0OnV9lChoBkdAkckLBbfP5mgHTegDaAhHQJRlfv3JxNt1fZQoaAZHQJVCM5fdAPdoB03oA2gIR0CUeaBvaURndX2UKGgGR0CUiVUDMeOoaAdN6ANoCEdAlHmhjnV5KXV9lChoBkdAk3tpQ1rIo2gHTegDaAhHQJR5osDnvDx1fZQoaAZHQJZTNsxfv4NoB03oA2gIR0CUeaPBSDRMdX2UKGgGR0CT0iToMa0haAdN6ANoCEdAlI37edkJ8nV9lChoBkdAleqFTWGyomgHTegDaAhHQJSN/JJXhfl1fZQoaAZHQJURzIkqto1oB03oA2gIR0CUjf4WUKRddX2UKGgGR0CViojWCmMwaAdN6ANoCEdAlI3/fwZwXXV9lChoBkdAlBOCa3I+4mgHTegDaAhHQJSiT8R+SbJ1fZQoaAZHQJS6nZElVtJoB03oA2gIR0CUolDrJKaodX2UKGgGR0CUbnleF+NMaAdN6ANoCEdAlKJSHRCx/3V9lChoBkdAlNsWOU+s5mgHTegDaAhHQJSiUzl90A91fZQoaAZHQJVrmY4Qz1toB03oA2gIR0CUtmkI5YHPdX2UKGgGR0CVL0BRAKOUaAdN6ANoCEdAlLZqTwDvE3V9lChoBkdAlWwIh6jWTWgHTegDaAhHQJS2a2VmjCZ1fZQoaAZHQJUdJCswL3NoB03oA2gIR0CUtmx1gYxddX2UKGgGR0CUN8yNXHR1aAdN6ANoCEdAlMrPtQbdanV9lChoBkdAk88hnezlcWgHTegDaAhHQJTK0P3BYV91fZQoaAZHQJRQsB91EE1oB03oA2gIR0CUytIsRQJpdX2UKGgGR0CVEaxEORT1aAdN6ANoCEdAlMrTV6NVBHV9lChoBkdAlStZHEuQIWgHTegDaAhHQJTfA2kzoEB1fZQoaAZHQJP61/EwWWRoB03oA2gIR0CU3wTVUdaMdX2UKGgGR0CTGdlo11nvaAdN6ANoCEdAlN8F6NVBEHV9lChoBkdAlGtO/+Kjz2gHTegDaAhHQJTfBu76Hj91fZQoaAZHQJUw/OpsGgVoB03oA2gIR0CU8wm+TNdJdX2UKGgGR0CVSKx9oexOaAdN6ANoCEdAlPMKwt8NQXV9lChoBkdAlIimmLtNSWgHTegDaAhHQJTzC9kBjnV1fZQoaAZHQJUaxX6qKgtoB03oA2gIR0CU8wzdk8RudX2UKGgGR0CWL59FWn0kaAdN6ANoCEdAlQdonrpqynV9lChoBkdAlZltqHoHLWgHTegDaAhHQJUHaagElmh1fZQoaAZHQJVGKfAbhm5oB03oA2gIR0CVB2qnm7rcdX2UKGgGR0CTcU/G2kSFaAdN6ANoCEdAlQdr+T/yXnV9lChoBkdAld8Os5n14GgHTegDaAhHQJUbXewcHW11fZQoaAZHQJcND15B1LdoB03oA2gIR0CVG18Ti83/dX2UKGgGR0CTLPsCT2WZaAdN6ANoCEdAlRtgMMI/q3V9lChoBkdAluHcEV32VWgHTegDaAhHQJUbYV6/qPh1fZQoaAZHQJWdyitaIN5oB03oA2gIR0CVMg8+A3DOdX2UKGgGR0CWuKTXJ5miaAdN6ANoCEdAlTIQXhwVCXV9lChoBkdAljoIhhYvFmgHTegDaAhHQJUyEW8AaNx1fZQoaAZHQJWFtAPd2xJoB03oA2gIR0CVMhJ1aGHpdX2UKGgGR0CSJshdt2s8aAdN6ANoCEdAlUX5BTn7pHV9lChoBkdAlaygiqyWzGgHTegDaAhHQJVF+iYb83x1fZQoaAZHQJXkWKk2xY9oB03oA2gIR0CVRfs052hadX2UKGgGR0CXy0kzoEB9aAdN6ANoCEdAlUX8QNCqqHVlLg=="
|
92 |
},
|
93 |
"ep_success_buffer": {
|
94 |
":type:": "<class 'collections.deque'>",
|
95 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
},
|
97 |
+
"_n_updates": 3907,
|
98 |
+
"n_steps": 64,
|
99 |
+
"gamma": 0.98,
|
100 |
"gae_lambda": 0.9,
|
101 |
"ent_coef": 0.0,
|
102 |
"vf_coef": 0.4,
|
a2c-HalfCheetahBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 54078
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd64885b1672cf87a893165d2fe775792026eaf968a572648116ed60555eadae
|
3 |
size 54078
|
a2c-HalfCheetahBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 54718
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55961f626d9f6295e22d9470c84dc851bc9a639c2b2934ab5dde133106983488
|
3 |
size 54718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f54065819e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5406581a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5406581b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5406581b90>", "_build": "<function ActorCriticPolicy._build at 0x7f5406581c20>", "forward": "<function ActorCriticPolicy.forward at 0x7f5406581cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5406581d40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5406581dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5406581e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5406581ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5406581f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f54065ca7e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVdwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsahZRoColDaAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsahZRoColDaAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsahZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsahZRoKolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [26], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661944887.0501702, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAO/OeQAAAAAAEGQk1t63QvQAAAAAuOds9AAAAAGoqIMAKL52/Nda0vN4HLz99xBc7BdNhvryhh7x5PAvBi3WXvQz7pL+QgDA9OXkbQNkQ6TxlIY3Akbmuvg3Brb7RJ1fAjQvNvbho8L07855AAAAAAAQZCTW3rdC9AAAAAC452z0AAAAAaiogwHkkib811rS82CjrPn3EFztuW+u9vKGHvDogGMGLdZe9QE+7v5CAMD3XpRtA2RDpPGUhjcCRua6+DcGtvtEnV8CNC829uGjwvTvznkAAAAAABBkJNbet0L0AAAAALjnbPQAAAABqKiDAbiCTvzXWtLxkLCU/fcQXO0XEob28oYe8LR7/wIt1l71wqrC/kIAwPWMJGUDZEOk8ZSGNwJG5rr4Nwa2+0SdXwI0Lzb24aPC9O/OeQAAAAAAEGQk1t63QvQAAAAAuOds9AAAAAGoqIMBLBHq/Nda0vF8M/D59xBc7p3xgvryhh7yLJBbBi3WXvXKtwb+QgDA9B50dQNkQ6TxlIY3Akbmuvg3Brb7RJ1fAjQvNvbho8L2UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAfsMK+AAAAAD8j6r0AAAAAa8yhvgAAAAAZsK0+AAAAAA7mBD4AAAAAqU6UPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPiv3L4AAAAAf1gBOgAAAADJM/C+AAAAAI9anT4AAAAAeMc9PAAAAACGrZs/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4U3hvgAAAAC0lQE+AAAAADDMh74AAAAA71iUPgAAAACWnyQ9AAAAAOqroD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICoOJa+AAAAAID2/zwAAAAAnj8uvgAAAACi+n4+AAAAAC3I1LwAAAAA5ZudPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHBB7mU4aP2MAWyUTegDjAF0lEdApcsotBfKIXV9lChoBkfAZ45g9eQdS2gHTegDaAhHQKXLKQ/X5Fh1fZQoaAZHwG4EzCLuQZJoB03oA2gIR0ClyymbsniOdX2UKGgGR8BqdiPU8V59aAdN6ANoCEdApcsqMHbAUXV9lChoBkfAf0eorFwT/WgHTegDaAhHQKXWxw+dK/V1fZQoaAZHwIN1+SU1Q69oB03oA2gIR0Cl1se2VmjCdX2UKGgGR8CANEkOZssQaAdN6ANoCEdApdbIaisXBXV9lChoBkfAe/x9OARTTGgHTegDaAhHQKXWyPtD2J11fZQoaAZHwH+yPkq+ajNoB03oA2gIR0Cl4p4a5wwTdX2UKGgGR8B5+f2Xb/OuaAdN6ANoCEdApeKei5/b03V9lChoBkfAfq5YywfQr2gHTegDaAhHQKXinyOJcgR1fZQoaAZHwHp/iYgJTl1oB03oA2gIR0Cl4p+w9q1xdX2UKGgGR8B6CdkXk5p8aAdN6ANoCEdApe58QZn+Q3V9lChoBkfAedlKnNxEOWgHTegDaAhHQKXufK8tf5V1fZQoaAZHwHf9MGTs6aNoB03oA2gIR0Cl7n0zj3mFdX2UKGgGR8B8i7pB5X2eaAdN6ANoCEdApe59wgkkbHV9lChoBkfAdBZ29+PRzGgHTegDaAhHQKX6YknCwbF1fZQoaAZHwHLTxzq8lHBoB03oA2gIR0Cl+mL8JlasdX2UKGgGR8Bx5KfL9uP4aAdN6ANoCEdApfpjnq3VkXV9lChoBkfAdvD3AmAskWgHTegDaAhHQKX6ZC3w1BN1fZQoaAZHwH9BMXenAIpoB03oA2gIR0CmBkPqLS/kdX2UKGgGR8B+tYVuaWonaAdN6ANoCEdApgZEaXKKYXV9lChoBkfAgg+b4SHuZ2gHTegDaAhHQKYGRSde6Zp1fZQoaAZHwIHrDdnCfpVoB03oA2gIR0CmBkXBxgiNdX2UKGgGR8B3uzRmbsniaAdN6ANoCEdAphM5dUsFuHV9lChoBkfAfKar+o99t2gHTegDaAhHQKYTOdkJ8fF1fZQoaAZHwHm7JtaY/mloB03oA2gIR0CmEzplJ6IFdX2UKGgGR8B+7247Rv3raAdN6ANoCEdAphM690zTF3V9lChoBkfAgRMirLhaT2gHTegDaAhHQKYe6AmReTp1fZQoaAZHwHyH/apPykNoB03oA2gIR0CmHuhzV+ZxdX2UKGgGR8CAPTRhttQ9aAdN6ANoCEdAph7o+0PYnXV9lChoBkfAe94kuHvc8GgHTegDaAhHQKYe6ZSeiBZ1fZQoaAZHwGoWPYFqzqtoB03oA2gIR0CmKp7vw3HadX2UKGgGR8BrrDDye7L/aAdN6ANoCEdApiqfQfIS13V9lChoBkfAbYxjXFtKqWgHTegDaAhHQKYqn9LHuJF1fZQoaAZHwHFg81fmcONoB03oA2gIR0CmKqBWYF7ldX2UKGgGR8Bq3N0tAcDKaAdN6ANoCEdApjZra/RE4XV9lChoBkfAa7/SofjjrGgHTegDaAhHQKY2a9yLhrF1fZQoaAZHwHFS4bbUPQRoB03oA2gIR0CmNmyH2ys0dX2UKGgGR8Bi9ywD/2kBaAdN6ANoCEdApjZtMVUMonV9lChoBkfAYdixB3RoiGgHTegDaAhHQKZCQ2UjcEh1fZQoaAZHwGbnWKMvRJFoB03oA2gIR0CmQkPC2tuDdX2UKGgGR8Bpa4C4jKPoaAdN6ANoCEdApkJEWhysCHV9lChoBkfAceoo8ZDRdGgHTegDaAhHQKZCROObRWt1fZQoaAZHwGACYdhiLEVoB03oA2gIR0CmTctITXardX2UKGgGR8BVH4tlI3BIaAdN6ANoCEdApk3Lnmq5snV9lChoBkfANQJn+Q2dd2gHTegDaAhHQKZNzDUmUnp1fZQoaAZHwFjBKNhmXgNoB03oA2gIR0CmTcy9mHxjdX2UKGgGR8Bd4zzVc2R8aAdN6ANoCEdApll555Z8r3V9lChoBkfAO9BrzoUzsWgHTegDaAhHQKZZelLvkR11fZQoaAZHwDoogaFVT75oB03oA2gIR0CmWXrgOz6adX2UKGgGR8BUAFAqur6taAdN6ANoCEdApll7gGbCrXV9lChoBkfAYA7SrHU+cGgHTegDaAhHQKZlTJp35et1fZQoaAZHwENXR77bcoJoB03oA2gIR0CmZU0q6OHWdX2UKGgGR8BST5GOMl1KaAdN6ANoCEdApmVN6Z6Uq3V9lChoBkfAQsmSKWLP2WgHTegDaAhHQKZlTrBTGYN1fZQoaAZHwF6uvc8DB/JoB03oA2gIR0CmcS4yfthNdX2UKGgGR8Bg4sEkjX4CaAdN6ANoCEdApnEux4Y773V9lChoBkfAYdRQ4S6DoWgHTegDaAhHQKZxL4t6HCZ1fZQoaAZHwF/Oncclw99oB03oA2gIR0CmcTBOpKjBdX2UKGgGR8BOznwXqJMyaAdN6ANoCEdApn0dLnLaEnV9lChoBkfAV9RweeWfLGgHTegDaAhHQKZ9HY+0PYp1fZQoaAZHwE2/B5X2dupoB03oA2gIR0CmfR48U21ldX2UKGgGR8BEBnE2pAD8aAdN6ANoCEdApn0exjawlnV9lChoBkfAJnDXOGCZnmgHTegDaAhHQKaI0W43FUB1fZQoaAZHwF21FMIu5BloB03oA2gIR0CmiNHVG0/odX2UKGgGR8BZmRyfcvduaAdN6ANoCEdApojSciGFjHV9lChoBkfATwMJlar3kGgHTegDaAhHQKaI0wKSgXd1fZQoaAZHwF1dJBw++uhoB03oA2gIR0CmlKfwqiGndX2UKGgGR8BW7xSgoPTYaAdN6ANoCEdAppSoS6DoQnV9lChoBkfAXvL1WbPQfWgHTegDaAhHQKaUqNVBD5V1fZQoaAZHwF6A3+dbxExoB03oA2gIR0CmlKljEvTPdX2UKGgGR8BjYz3sXzlLaAdN6ANoCEdApqBtschkiHV9lChoBkfAXfQnkT6BRWgHTegDaAhHQKagbhXr+o91fZQoaAZHwGBu+YUnG85oB03oA2gIR0CmoG6ef7JodX2UKGgGR8BT7tJaq0dBaAdN6ANoCEdApqBvMdLg43V9lChoBkfAbZmZ4Oc2BWgHTegDaAhHQKasMF7laKV1fZQoaAZHwGpu9mYjSohoB03oA2gIR0CmrDC8OCoTdX2UKGgGR8Bmd4cvM8oyaAdN6ANoCEdApqwxWHUMHHV9lChoBkfAapx0IToMa2gHTegDaAhHQKasMgsbvPV1fZQoaAZHwGknawljVhFoB03oA2gIR0Cmt/4hllK9dX2UKGgGR8BwkcqvvBrOaAdN6ANoCEdAprf+jGkvb3V9lChoBkfAbEO0lZ5iVmgHTegDaAhHQKa3/1g6U7l1fZQoaAZHwG25F05lvqFoB03oA2gIR0CmuAAHE/B4dX2UKGgGR8Bnl+2RaHKwaAdN6ANoCEdApsPbF6zE8HV9lChoBkfAcSobjLjgh2gHTegDaAhHQKbD23DvVmV1fZQoaAZHwHHbmw3YL9doB03oA2gIR0Cmw9wCr92pdX2UKGgGR8Bvcc7fYSQHaAdN6ANoCEdApsPcnRb8nHV9lChoBkfAdCWzSThYNmgHTegDaAhHQKbPoNEPUa11fZQoaAZHwHS0u6d1+y9oB03oA2gIR0Cmz6E74i5edX2UKGgGR8B6mzs3Q2MsaAdN6ANoCEdAps+hzaK1onV9lChoBkfAdKnQ9ic5KmgHTegDaAhHQKbPolkYoAp1fZQoaAZHwGMFYjrzGxVoB03oA2gIR0Cm23l8G9pRdX2UKGgGR8BS6N8/lhgFaAdN6ANoCEdAptt5y0a6z3V9lChoBkfAZ58eU6gdwWgHTegDaAhHQKbbelhPTG51fZQoaAZHwGIPlF2FFlVoB03oA2gIR0Cm23rzGxUvdX2UKGgGR8BxZTta6jFiaAdN6ANoCEdApudJXMhX83V9lChoBkfAahx8Nx2jf2gHTegDaAhHQKbnSbc45tF1fZQoaAZHwGfnSP+4smRoB03oA2gIR0Cm50pDVpbmdX2UKGgGR8BoXVECvHLiaAdN6ANoCEdApudK3PRiPXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f54065819e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5406581a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5406581b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5406581b90>", "_build": "<function ActorCriticPolicy._build at 0x7f5406581c20>", "forward": "<function ActorCriticPolicy.forward at 0x7f5406581cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5406581d40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5406581dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5406581e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5406581ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5406581f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f54065ca7e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVdwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsahZRoColDaAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsahZRoColDaAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsahZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsahZRoKolDGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [26], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000192, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661949845.4752584, "learning_rate": 0.00073, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0frrxAjY7KFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAX26kPwwJtybMTQQ9zN/ivw0cpaMDea++0k0EvQWGN8BJj/M/eZrXv2ZTSkBNJpy/sRX3v/7ghD+g2FY/KMqNvLk16T4nSNa/w/2gvsQ/kkBcZru/bgINvtuFjL5qIcU+3GqovTSQir3t82q+DAm3JsxNBD1sX5c+DRylo3hKXj/STQS92t48vSS65T4FLFu/u/GqPlbLtD8a6+2+MducP49ojj+DE9C7kv9+vMB9n79PWJi/KD3/P1xmu79uAg2+24WMvmohxT7caqi9NJCKvf7Zgj4MCbcmzE0EPQZ20D8NHKWj8QF9wNJNBL3Y+hi/XN8mvzsaNT1hsOs/ZitIQHZ9DL+JW42/SgYdvs5QBkB3j2o/H3hWv3T5l78FfhfAJ9suP24CDb7bhYy+aiHFPtxqqL00kIq9uTDIPgwJtybMTQQ9wVRFPg0cpaOtPa0/0k0EvR1CGj7gKvA9Y0e+vgGwfb5wOLK+PYRFP+mXST+yHVY/drMCvG8O47623QW/r7jzvqRy8T8n2y4/bgINvtuFjL5qIcU+3GqovTSQir2UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVLQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLGoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKgAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBV5te+AAAAAAxWVrwAAAAAmrOFvgAAAADwsL0+AAAAAAq7y7wAAAAAhLicPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOdyzr4AAAAAfgjlOwAAAAClcki+AAAAAOtooj4AAAAAUA6LPQAAAACH6pI/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjPzsvgAAAACKt2i9AAAAAJ8KS74AAAAAYTN7PgAAAABayWA9AAAAACMroT8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC4sF2+AAAAAJpr4j0AAAAAdgy8vgAAAADN5V8+AAAAAEhj0D0AAAAAFgSjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": -0.00019199999999996997, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJIIaN70Fr6MAWyUTegDjAF0lEdAk1+WPYFqz3V9lChoBkdAkr9hrSE122gHTegDaAhHQJNfl1fVqet1fZQoaAZHQJL5ABIWgvloB03oA2gIR0CTX5hib2DhdX2UKGgGR0CTxlVIZqEfaAdN6ANoCEdAk1+ZZW7vonV9lChoBkdAkwoRHXmNi2gHTegDaAhHQJNzwqy4Wk91fZQoaAZHQJLM5TkyULVoB03oA2gIR0CTc8PTXrdFdX2UKGgGR0CTjc3j+717aAdN6ANoCEdAk3PE/bCaZ3V9lChoBkdAkz+6OxSpBGgHTegDaAhHQJNzxjSXt0F1fZQoaAZHQJNqzV2A5JdoB03oA2gIR0CTh6IdU83ddX2UKGgGR0CUYd+UQkHEaAdN6ANoCEdAk4ejMFEApHV9lChoBkdAkuQJiiItUWgHTegDaAhHQJOHpFAmiQF1fZQoaAZHQJJ74Pe54GFoB03oA2gIR0CTh6VVPva2dX2UKGgGR0CTKEVYISlFaAdN6ANoCEdAk5uhJAdGRXV9lChoBkdAklMhk3CKrWgHTegDaAhHQJOboixFAml1fZQoaAZHQJPYIO/cnE5oB03oA2gIR0CTm6NKyv9tdX2UKGgGR0CSKCMLF4s3aAdN6ANoCEdAk5ukUCaJAXV9lChoBkdAk/QjTrmhd2gHTegDaAhHQJOvumNzbN91fZQoaAZHQJLeyUGFBY5oB03oA2gIR0CTr7uqm0mddX2UKGgGR0CTcdJcgQpXaAdN6ANoCEdAk6+889wFT3V9lChoBkdAk/tNHDrJKmgHTegDaAhHQJOvvgm7aqV1fZQoaAZHQJENCILw4KhoB03oA2gIR0CTw9I3R5TqdX2UKGgGR0CTFnkdV/+baAdN6ANoCEdAk8PTVx0dR3V9lChoBkdAktYxoRIz32gHTegDaAhHQJPD1IClrM11fZQoaAZHQJQkUvXbudBoB03oA2gIR0CTw9WjoIOZdX2UKGgGR0CTr0w6hg3MaAdN6ANoCEdAk9fhGhEjPnV9lChoBkdAlJV7amGdqmgHTegDaAhHQJPX4lSjxkN1fZQoaAZHQJJV9qagElpoB03oA2gIR0CT1+N4Z/CqdX2UKGgGR0CTl1jWkJrtaAdN6ANoCEdAk9fke6qbSnV9lChoBkdAlOrwTyrgfmgHTegDaAhHQJPr1mh/RVp1fZQoaAZHQJSkPko4MnZoB03oA2gIR0CT69d/rjYJdX2UKGgGR0CT0sixFAmiaAdN6ANoCEdAk+vYlpoK2XV9lChoBkdAlM3XSOR1YGgHTegDaAhHQJPr2ZAprk91fZQoaAZHQJQVWNedCmdoB03oA2gIR0CT/896C17ZdX2UKGgGR0CVJQVwgkkbaAdN6ANoCEdAk//Qo9cKPXV9lChoBkdAlG5WUSqU/2gHTegDaAhHQJP/0cIZ62R1fZQoaAZHQJSBh0mtyPxoB03oA2gIR0CT/9MGX5WSdX2UKGgGR0CVx/+UyHmBaAdN6ANoCEdAlBRKqGUOeHV9lChoBkdAlbnCdFvyb2gHTegDaAhHQJQUS7lJYkp1fZQoaAZHQJVBWPBBRhtoB03oA2gIR0CUFE0qH447dX2UKGgGR0CWg3hllK9PaAdN6ANoCEdAlBRONT987nV9lChoBkdAlbVSHRCx/2gHTegDaAhHQJQoig13t8h1fZQoaAZHQJSL3Y9Pk7xoB03oA2gIR0CUKIs052hadX2UKGgGR0CVLhx5LRKIaAdN6ANoCEdAlCiMSkCV8nV9lChoBkdAlNtpWNm16WgHTegDaAhHQJQojY287IV1fZQoaAZHQJQOoeS0Sh9oB03oA2gIR0CUPOQokRjCdX2UKGgGR0CU5hwOe8PGaAdN6ANoCEdAlDzlTisGPnV9lChoBkdAlhHBLsa86GgHTegDaAhHQJQ85mQKa5R1fZQoaAZHQJVvTzGxUvRoB03oA2gIR0CUPOdrO7g9dX2UKGgGR0CV4Aq+JxecaAdN6ANoCEdAlFFPM4cWCXV9lChoBkdAlFfudbxEv2gHTegDaAhHQJRRUE3bVSZ1fZQoaAZHQJa8kqvvBrNoB03oA2gIR0CUUVFl05lwdX2UKGgGR0CWV29Tgl4UaAdN6ANoCEdAlFFSeI2wV3V9lChoBkdAlYx2WD6Fd2gHTegDaAhHQJRle2rn1Wd1fZQoaAZHQJZZMpBomHBoB03oA2gIR0CUZXyquKXOdX2UKGgGR0CVpmz3yqdZaAdN6ANoCEdAlGV93np0OnV9lChoBkdAkckLBbfP5mgHTegDaAhHQJRlfv3JxNt1fZQoaAZHQJVCM5fdAPdoB03oA2gIR0CUeaBvaURndX2UKGgGR0CUiVUDMeOoaAdN6ANoCEdAlHmhjnV5KXV9lChoBkdAk3tpQ1rIo2gHTegDaAhHQJR5osDnvDx1fZQoaAZHQJZTNsxfv4NoB03oA2gIR0CUeaPBSDRMdX2UKGgGR0CT0iToMa0haAdN6ANoCEdAlI37edkJ8nV9lChoBkdAleqFTWGyomgHTegDaAhHQJSN/JJXhfl1fZQoaAZHQJURzIkqto1oB03oA2gIR0CUjf4WUKRddX2UKGgGR0CViojWCmMwaAdN6ANoCEdAlI3/fwZwXXV9lChoBkdAlBOCa3I+4mgHTegDaAhHQJSiT8R+SbJ1fZQoaAZHQJS6nZElVtJoB03oA2gIR0CUolDrJKaodX2UKGgGR0CUbnleF+NMaAdN6ANoCEdAlKJSHRCx/3V9lChoBkdAlNsWOU+s5mgHTegDaAhHQJSiUzl90A91fZQoaAZHQJVrmY4Qz1toB03oA2gIR0CUtmkI5YHPdX2UKGgGR0CVL0BRAKOUaAdN6ANoCEdAlLZqTwDvE3V9lChoBkdAlWwIh6jWTWgHTegDaAhHQJS2a2VmjCZ1fZQoaAZHQJUdJCswL3NoB03oA2gIR0CUtmx1gYxddX2UKGgGR0CUN8yNXHR1aAdN6ANoCEdAlMrPtQbdanV9lChoBkdAk88hnezlcWgHTegDaAhHQJTK0P3BYV91fZQoaAZHQJRQsB91EE1oB03oA2gIR0CUytIsRQJpdX2UKGgGR0CVEaxEORT1aAdN6ANoCEdAlMrTV6NVBHV9lChoBkdAlStZHEuQIWgHTegDaAhHQJTfA2kzoEB1fZQoaAZHQJP61/EwWWRoB03oA2gIR0CU3wTVUdaMdX2UKGgGR0CTGdlo11nvaAdN6ANoCEdAlN8F6NVBEHV9lChoBkdAlGtO/+Kjz2gHTegDaAhHQJTfBu76Hj91fZQoaAZHQJUw/OpsGgVoB03oA2gIR0CU8wm+TNdJdX2UKGgGR0CVSKx9oexOaAdN6ANoCEdAlPMKwt8NQXV9lChoBkdAlIimmLtNSWgHTegDaAhHQJTzC9kBjnV1fZQoaAZHQJUaxX6qKgtoB03oA2gIR0CU8wzdk8RudX2UKGgGR0CWL59FWn0kaAdN6ANoCEdAlQdonrpqynV9lChoBkdAlZltqHoHLWgHTegDaAhHQJUHaagElmh1fZQoaAZHQJVGKfAbhm5oB03oA2gIR0CVB2qnm7rcdX2UKGgGR0CTcU/G2kSFaAdN6ANoCEdAlQdr+T/yXnV9lChoBkdAld8Os5n14GgHTegDaAhHQJUbXewcHW11fZQoaAZHQJcND15B1LdoB03oA2gIR0CVG18Ti83/dX2UKGgGR0CTLPsCT2WZaAdN6ANoCEdAlRtgMMI/q3V9lChoBkdAluHcEV32VWgHTegDaAhHQJUbYV6/qPh1fZQoaAZHQJWdyitaIN5oB03oA2gIR0CVMg8+A3DOdX2UKGgGR0CWuKTXJ5miaAdN6ANoCEdAlTIQXhwVCXV9lChoBkdAljoIhhYvFmgHTegDaAhHQJUyEW8AaNx1fZQoaAZHQJWFtAPd2xJoB03oA2gIR0CVMhJ1aGHpdX2UKGgGR0CSJshdt2s8aAdN6ANoCEdAlUX5BTn7pHV9lChoBkdAlaygiqyWzGgHTegDaAhHQJVF+iYb83x1fZQoaAZHQJXkWKk2xY9oB03oA2gIR0CVRfs052hadX2UKGgGR0CXy0kzoEB9aAdN6ANoCEdAlUX8QNCqqHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3907, "n_steps": 64, "gamma": 0.98, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1647.6496397090327, "std_reward": 21.634453578848827, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-31T13:06:09.031703"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2659
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4986e9325f8324f1be0f5dc1050a1be829e36c39fedf1feb458405a47654e8d
|
3 |
size 2659
|