|
--- |
|
language: |
|
- id |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- hf-asr-leaderboard |
|
- robust-speech-event |
|
datasets: |
|
- mozilla-foundation/common_voice_8_0 |
|
metrics: |
|
- wer |
|
- cer |
|
base_model: facebook/wav2vec2-xls-r-1b |
|
model-index: |
|
- name: wav2vec2-large-xls-r-1b-Indonesian |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Speech Recognition |
|
dataset: |
|
name: Common Voice id |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: id |
|
metrics: |
|
- type: wer |
|
value: 45.51 |
|
name: Test WER |
|
- type: cer |
|
value: 16.43 |
|
name: Test CER |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: id |
|
metrics: |
|
- type: wer |
|
value: 72.73 |
|
name: Test WER |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Robust Speech Event - Test Data |
|
type: speech-recognition-community-v2/eval_data |
|
args: id |
|
metrics: |
|
- type: wer |
|
value: 79.29 |
|
name: Test WER |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-1b-Indonesian |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9550 |
|
- Wer: 0.4551 |
|
- Cer: 0.1643 |
|
|
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 400 |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 3.663 | 7.69 | 200 | 0.7898 | 0.6039 | 0.1848 | |
|
| 0.7424 | 15.38 | 400 | 1.0215 | 0.5615 | 0.1924 | |
|
| 0.4494 | 23.08 | 600 | 1.0901 | 0.5249 | 0.1932 | |
|
| 0.5075 | 30.77 | 800 | 1.1013 | 0.5079 | 0.1935 | |
|
| 0.4671 | 38.46 | 1000 | 1.1034 | 0.4916 | 0.1827 | |
|
| 0.1928 | 46.15 | 1200 | 0.9550 | 0.4551 | 0.1643 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0.dev0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.2.dev0 |
|
- Tokenizers 0.11.0 |
|
|