metadata
language:
- sv
license: apache-2.0
tags:
- automatic-speech-recognition
- robust-speech-event
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
- cer
model-index:
- name: wav2vec2-large-xls-r-1b-Swedish
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: mozilla-foundation/common_voice_8_0
name: Common Voice sv-SE
args: sv-SE
metrics:
- type: wer
value: 14.04
name: Test WER With LM
- type: cer
value: 4.86
name: Test CER With LM
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: sv
metrics:
- name: Test WER
type: wer
value: 29.69
- name: Test CER
type: cer
value: 12.59
wav2vec2-large-xls-r-1b-Swedish
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice dataset. It achieves the following results on the evaluation set:
Without LM
- Loss: 0.3370
- Wer: 18.44
- Cer: 5.75
With LM
- Loss: 0.3370
- Wer: 14.04
- Cer: 4.86
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_8_0
with splittest
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Swedish --dataset mozilla-foundation/common_voice_8_0 --config sv-SE --split test
- To evaluate on
speech-recognition-community-v2/dev_data
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Swedish --dataset speech-recognition-community-v2/dev_data --config sv --split validation --chunk_length_s 5.0 --stride_length_s 1.0
Inference With LM
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "kingabzpro/wav2vec2-large-xls-r-1b-Swedish"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sv-SE", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
3.1562 | 11.11 | 500 | 0.4830 | 0.3729 | 0.1169 |
0.5655 | 22.22 | 1000 | 0.3553 | 0.2381 | 0.0743 |
0.3376 | 33.33 | 1500 | 0.3359 | 0.2179 | 0.0696 |
0.2419 | 44.44 | 2000 | 0.3232 | 0.1844 | 0.0575 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0