kingabzpro's picture
Librarian Bot: Add base_model information to model (#1)
3c2228b verified
metadata
language:
  - sv
license: apache-2.0
tags:
  - automatic-speech-recognition
  - robust-speech-event
  - hf-asr-leaderboard
datasets:
  - mozilla-foundation/common_voice_8_0
metrics:
  - wer
  - cer
base_model: facebook/wav2vec2-xls-r-300m
model-index:
  - name: wav2vec2-xls-r-300m-swedish
    results:
      - task:
          type: automatic-speech-recognition
          name: Speech Recognition
        dataset:
          name: Common Voice sv-SE
          type: mozilla-foundation/common_voice_8_0
          args: sv-SE
        metrics:
          - type: wer
            value: 24.73
            name: Test WER
            args:
              learning_rate: 0.000075
              train_batch_size: 64
              eval_batch_size: 8
              seed: 42
              gradient_accumulation_steps: 2
              total_train_batch_size: 128
              optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
              lr_scheduler_type: linear
              lr_scheduler_warmup_steps: 1000
              num_epochs: 50
              mixed_precision_training: Native AMP
          - type: cer
            value: 7.58
            name: Test CER
            args:
              learning_rate: 0.000075
              train_batch_size: 64
              eval_batch_size: 8
              seed: 42
              gradient_accumulation_steps: 2
              total_train_batch_size: 128
              optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
              lr_scheduler_type: linear
              lr_scheduler_warmup_steps: 1000
              num_epochs: 50
              mixed_precision_training: Native AMP

wav2vec2-large-xls-r-300m-Swedish

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3641
  • Wer: 0.2473
  • Cer: 0.0758

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
6.1097 5.49 500 3.1422 1.0 1.0
2.985 10.98 1000 1.7357 0.9876 0.4125
1.0363 16.48 1500 0.4773 0.3510 0.1047
0.6111 21.97 2000 0.3937 0.2998 0.0910
0.4942 27.47 2500 0.3779 0.2776 0.0844
0.4421 32.96 3000 0.3745 0.2630 0.0807
0.4018 38.46 3500 0.3685 0.2553 0.0781
0.3759 43.95 4000 0.3618 0.2488 0.0761
0.3646 49.45 4500 0.3641 0.2473 0.0758

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0