wav2vec2-large-xlsr-300-arabic
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4514
- Wer: 0.4256
- Cer: 0.1528
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_7_0
with split test
python eval.py --model_id kingabzpro/wav2vec2-large-xlsr-300-arabic --dataset mozilla-foundation/common_voice_7_0 --config ur --split test
Inference With LM
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "kingabzpro/wav2vec2-large-xlsr-300-arabic"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ar", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
Cer |
5.4375 |
1.8 |
500 |
3.3330 |
1.0 |
1.0 |
2.2187 |
3.6 |
1000 |
0.7790 |
0.6501 |
0.2338 |
0.9471 |
5.4 |
1500 |
0.5353 |
0.5015 |
0.1822 |
0.7416 |
7.19 |
2000 |
0.4889 |
0.4490 |
0.1640 |
0.6358 |
8.99 |
2500 |
0.4514 |
0.4256 |
0.1528 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0